Behavioral Sciences Department.
J Exp Psychol Learn Mem Cogn. 2020 Mar;46(3):497-506. doi: 10.1037/xlm0000741. Epub 2019 Jul 8.
Attribute-framing bias reflects people's tendency to evaluate positively framed objects more favorably than the same objects framed negatively. Most theoretical accounts of this bias emphasized the role of positive- and negative-framing valence in the message, disregarding the quantitative information that typically accompanies it. To examine the role of both framing valence and detailed quantitative information in attribute-framing bias, we applied the distinction between gist and verbatim representations, as proposed by fuzzy-trace theory. We hypothesized that gist representations retain the framing valence used in the scenario, consequently eliciting biased positive or negative evaluations, whereas verbatim representations retain detailed quantitative information that allows for fine-tuning of the evaluations reflective of the magnitude of the target attribute. In 2 experiments, we compared precise presentations of different magnitudes using percentages and pie charts with vague presentations using verbal descriptions. A substantial attribute-framing bias was found for both the precise and vague presentation conditions, consistent with the hypothesis that the framing bias is driven by coarse and imprecise gist representation. Critically, however, the findings reveal higher correlations between evaluations and the magnitude of the target attribute in the precise presentation conditions (percentages and pie charts) compared with the vague verbal presentation. This finding suggests a process of fine-tuning of the evaluations when a detailed verbatim representation of the quantitative information is available. We discuss the findings in view of the distinction between gist and verbatim representations and propose future research to examine similar cognitive mechanisms accounting for biases in judgment and decision making. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
属性框架偏差反映了人们对正框架物体的评价比负框架物体更有利的倾向。大多数关于这种偏差的理论解释都强调了信息中正面和负面框架的作用,而忽略了通常伴随的定量信息。为了检验属性框架偏差中框架的正负效价和详细定量信息的作用,我们应用了模糊痕迹理论提出的要义和逐字表示之间的区别。我们假设,要义和逐字表示保留了在场景中使用的框架效价,因此会引起有偏差的积极或消极评价,而逐字表示保留了详细的定量信息,这些信息允许对评价进行微调,反映目标属性的大小。在 2 项实验中,我们使用百分比和饼图来精确呈现不同的大小,用口头描述来模糊呈现。实验发现,无论是精确呈现还是模糊呈现,都存在明显的属性框架偏差,这与框架偏差是由粗略和不精确的要义和逐字表示驱动的假设一致。然而,重要的是,研究结果表明,在精确呈现的条件下(百分比和饼图),评价与目标属性的大小之间存在更高的相关性,而在模糊的口头呈现条件下则没有。这一发现表明,当有详细的定量信息的逐字表示时,评价会进行微调。我们根据要义和逐字表示之间的区别讨论了这些发现,并提出了未来的研究来检验类似的认知机制,以解释判断和决策中的偏差。(心理学文摘数据库记录(c)2020 年 APA,保留所有权利)。