Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
Biotechnol Bioeng. 2019 Oct;116(10):2587-2597. doi: 10.1002/bit.27103. Epub 2019 Jul 21.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3-1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L ·hr were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.
在利用酵母酿酒生产乙醇的过程中,热损伤、高渗透压和乙醇毒性会限制其产量和生产效率。我们发现,在 39.5°C 下进行长期的适应性实验室进化,可产生耐受高温的酵母菌株,在 2%葡萄糖发酵中,这些菌株可使乙醇得率和生产效率分别提高 10%和 70%。从这些耐受高渗透压的菌株中,我们选择了一株稳定的、不含染色体重复的菌株,即 TTY23 菌株。该菌株表现出较低的线粒体代谢和较高的质子流出,因此具有较低的乙醇耐受性。通过将发酵 pH 值从 5 提高到 6 和/或向培养基中添加钾来重新建立质子平衡,可以缓解这种适应不良的情况。这种变化使 TTY23 菌株在 40°C、葡萄糖浓度约为 300 g/L 的发酵中,比亲本菌株多生产 1.3-1.6 倍的乙醇。此外,在含有钾的培养基中,40°C 时用 200 g/L 葡萄糖进行发酵,可获得高达 93.1 g·L-1 和 3.87 g·L-1·hr-1 的乙醇得率和生产效率。尽管细胞对热、乙醇和高渗透压的反应非常复杂,但在本研究中,我们通过反向代谢工程方法克服了这些限制。