Suppr超能文献

联合贝叶斯纳入多高斯图形模型估计以研究青少年大脑连通性发展。

Joint Bayesian-Incorporating Estimation of Multiple Gaussian Graphical Models to Study Brain Connectivity Development in Adolescence.

出版信息

IEEE Trans Med Imaging. 2020 Feb;39(2):357-365. doi: 10.1109/TMI.2019.2926667. Epub 2019 Jul 3.

Abstract

Adolescence is a transitional period between the childhood and adulthood with physical changes, as well as increasing emotional development. Studies have shown that the emotional sensitivity is related to a second period of rapid brain growth. However, there is little focus on the trend of brain development during this period. In this paper, we aim to track functional brain connectivity development from late childhood to young adulthood. Mathematically, this problem can be modeled via the estimation of multiple Gaussian graphical models (GGMs). However, most existing methods either require the graph sequence to be fairly long or are only applicable to small graphs. In this paper, we adapted a Bayesian approach incorporating joint estimation of multiple GGMs to overcome the short sequence difficulty, which is also computationally efficient. The data used are the functional magnetic resonance imaging (fMRI) images obtained from the publicly available Philadelphia Neurodevelopmental Cohort (PNC). They include 855 individuals aged 8-22 years who were divided into five different adolescent stages. We summarized the networks with global measurements and applied a hypothesis test across age groups to detect the developmental patterns. Three patterns were detected and defined as consistent development, late puberty, and temporal change. We also discovered several anatomical areas, such as the middle frontal gyrus, putamen gyrus, right lingual gyrus, and right cerebellum crus 2 that are highly involved in the brain functional development. The functional networks, including the salience, subcortical, and auditory networks are significantly developing during the adolescent period.

摘要

青春期是儿童期向成年期过渡的时期,伴随着身体变化和情绪的发展。研究表明,情绪敏感性与大脑的第二次快速生长有关。然而,人们对这一时期大脑发育的趋势关注甚少。在本文中,我们旨在追踪从儿童后期到青年早期的功能性大脑连接发展。从数学上讲,这个问题可以通过估计多个高斯图形模型(GGM)来建模。然而,大多数现有的方法要么要求图形序列相当长,要么只适用于小图形。在本文中,我们采用了一种贝叶斯方法,将多个 GGM 的联合估计纳入其中,以克服短序列的困难,同时也具有较高的计算效率。所使用的数据是从公开的费城神经发育队列(PNC)获得的功能磁共振成像(fMRI)图像。这些数据包括 855 名年龄在 8 到 22 岁之间的个体,他们被分为五个不同的青春期阶段。我们用全局测量方法对网络进行了总结,并在不同年龄组之间进行了假设检验,以检测发育模式。我们检测到了三种模式,分别是一致发育、青春期后期和时间变化。我们还发现了一些与大脑功能发展高度相关的解剖区域,如额中回、壳核、右侧舌回和右侧小脑 crus2。在青春期,包括突显网络、皮质下网络和听觉网络在内的功能性网络都在显著发育。

相似文献

1
Joint Bayesian-Incorporating Estimation of Multiple Gaussian Graphical Models to Study Brain Connectivity Development in Adolescence.
IEEE Trans Med Imaging. 2020 Feb;39(2):357-365. doi: 10.1109/TMI.2019.2926667. Epub 2019 Jul 3.
2
Integrative Bayesian analysis of brain functional networks incorporating anatomical knowledge.
Neuroimage. 2018 Nov 1;181:263-278. doi: 10.1016/j.neuroimage.2018.07.015. Epub 2018 Jul 11.
4
Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment.
Neuroimage. 2018 Feb 1;166:293-306. doi: 10.1016/j.neuroimage.2017.10.048. Epub 2017 Nov 7.
6
Similarity of individual functional brain connectivity patterns formed by music listening quantified with a data-driven approach.
Int J Comput Assist Radiol Surg. 2020 Apr;15(4):703-713. doi: 10.1007/s11548-019-02077-y. Epub 2019 Oct 26.
7
Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.
IEEE Trans Med Imaging. 2020 Feb;39(2):488-498. doi: 10.1109/TMI.2019.2929959. Epub 2019 Jul 19.
8
Integrating additional knowledge into the estimation of graphical models.
Int J Biostat. 2021 Mar 9;18(1):1-17. doi: 10.1515/ijb-2020-0133.
9
Scalable Bayesian matrix normal graphical models for brain functional networks.
Biometrics. 2021 Jun;77(2):439-450. doi: 10.1111/biom.13319. Epub 2020 Jul 10.
10
Adolescent sex differences in cortico-subcortical functional connectivity during response inhibition.
Cogn Affect Behav Neurosci. 2020 Feb;20(1):1-18. doi: 10.3758/s13415-019-00718-y.

引用本文的文献

1
A novel integration of brain structural and functional connectivity for identifying traumatic brain injury induced perturbations.
J Neurosci Methods. 2025 Jul;419:110459. doi: 10.1016/j.jneumeth.2025.110459. Epub 2025 Apr 22.
3
Time-varying dynamic Bayesian network learning for an fMRI study of emotion processing.
Stat Med. 2024 Jun 30;43(14):2713-2733. doi: 10.1002/sim.10096. Epub 2024 May 1.
4
Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder.
Hum Brain Mapp. 2021 Jun 15;42(9):2691-2705. doi: 10.1002/hbm.25394. Epub 2021 Apr 9.

本文引用的文献

1
Capturing Dynamic Connectivity from Resting State fMRI using Time-Varying Graphical Lasso.
IEEE Trans Biomed Eng. 2018 Nov 9. doi: 10.1109/TBME.2018.2880428.
2
Aberrant Brain Connectivity in Schizophrenia Detected via a Fast Gaussian Graphical Model.
IEEE J Biomed Health Inform. 2019 Jul;23(4):1479-1489. doi: 10.1109/JBHI.2018.2854659. Epub 2018 Jul 9.
3
Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.
Neuroimage. 2018 Sep;178:370-384. doi: 10.1016/j.neuroimage.2018.04.077. Epub 2018 May 7.
4
Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.
IEEE Trans Med Imaging. 2018 May;37(5):1224-1234. doi: 10.1109/TMI.2017.2786553.
6
Functional hypergraph uncovers novel covariant structures over neurodevelopment.
Hum Brain Mapp. 2017 Aug;38(8):3823-3835. doi: 10.1002/hbm.23631. Epub 2017 May 11.
7
On joint estimation of Gaussian graphical models for spatial and temporal data.
Biometrics. 2017 Sep;73(3):769-779. doi: 10.1111/biom.12650. Epub 2017 Jan 18.
8
Adolescent brain development and depression: A case for the importance of connectivity of the anterior cingulate cortex.
Neurosci Biobehav Rev. 2016 Nov;70:271-287. doi: 10.1016/j.neubiorev.2016.07.024. Epub 2016 Jul 25.
9
Bayesian Inference of Multiple Gaussian Graphical Models.
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
10
A role of right middle frontal gyrus in reorienting of attention: a case study.
Front Syst Neurosci. 2015 Mar 3;9:23. doi: 10.3389/fnsys.2015.00023. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验