Suppr超能文献

将额外知识整合到图形模型的估计中。

Integrating additional knowledge into the estimation of graphical models.

机构信息

Departments of Statistics and Biostatistics, University of Washington, Seattle, USA.

出版信息

Int J Biostat. 2021 Mar 9;18(1):1-17. doi: 10.1515/ijb-2020-0133.

Abstract

Graphical models such as brain connectomes derived from functional magnetic resonance imaging (fMRI) data are considered a prime gateway to understanding network-type processes. We show, however, that standard methods for graphical modeling can fail to provide accurate graph recovery even with optimal tuning and large sample sizes. We attempt to solve this problem by leveraging information that is often readily available in practice but neglected, such as the spatial positions of the measurements. This information is incorporated into the tuning parameter of neighborhood selection, for example, in the form of pairwise distances. Our approach is computationally convenient and efficient, carries a clear Bayesian interpretation, and improves standard methods in terms of statistical stability. Applied to data about Alzheimer's disease, our approach allows us to highlight the central role of lobes in the connectivity structure of the brain and to identify an increased connectivity within the cerebellum for Alzheimer's patients compared to other subjects.

摘要

图形模型,如基于功能磁共振成像 (fMRI) 数据的脑连接组,被认为是理解网络型过程的主要途径。然而,我们表明,即使经过最佳调整和大样本量,标准的图形建模方法也可能无法提供准确的图形恢复。我们试图通过利用实践中通常很容易获得但被忽视的信息来解决这个问题,例如测量的空间位置。例如,我们将此信息以成对距离的形式纳入到邻域选择的调整参数中。我们的方法计算方便、高效,具有清晰的贝叶斯解释,并在统计稳定性方面改进了标准方法。应用于阿尔茨海默病的数据,我们的方法使我们能够突出脑连接结构中叶的核心作用,并确定与其他受试者相比,阿尔茨海默病患者小脑内的连接增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验