Suppr超能文献

基于稀疏隐马尔可夫模型估计动态功能脑连接

Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.

出版信息

IEEE Trans Med Imaging. 2020 Feb;39(2):488-498. doi: 10.1109/TMI.2019.2929959. Epub 2019 Jul 19.

Abstract

Estimating dynamic functional network connectivity (dFNC) of the brain from functional magnetic resonance imaging (fMRI) data can reveal both spatial and temporal organization and can be applied to track the developmental trajectory of brain maturity as well as to study mental illness. Resting state fMRI (rs-fMRI) is regarded as a promising task since it reflects the spontaneous brain activity without an external stimulus. The sliding window method has been successfully used to extract dFNC but typically assumes a fixed window size. The hidden Markov model (HMM) based method is an alternative approach for estimating time-varying connectivity. In this paper, we propose a sparse HMM based on Gaussian HMM and Gaussian graphical model (GGM). In this model, the time-varying neural processes are represented as discrete brain states which are described with functional connectivity networks. By enforcing the sparsity on the precision matrix, we can get interpretable connectivity between different functional regions. The optimization of our model can be realized with the expectation maximization (EM) and graphical least absolute shrinkage and selection operator (glasso) algorithms. The proposed model is validated on both simulated blood oxygenation-level dependent (BOLD) time series and rs-fMRI data. Results indicate that the proposed model can capture both stationary and abrupt brain activity fluctuations. We also compare dFNC patterns between children and young adults from the Philadelphia Neurodevelopmental Cohort (PNC) study. Both spatial and temporal behavior of the dFNC are analyzed and compared. The results provide insight into the developmental trajectory across childhood and motivate further research on brain connectivity.

摘要

从功能磁共振成像 (fMRI) 数据估计大脑的动态功能连接 (dFNC) 可以揭示空间和时间组织,可用于跟踪大脑成熟的发育轨迹,也可用于研究精神疾病。静息态 fMRI (rs-fMRI) 被认为是一种很有前途的任务,因为它反映了没有外部刺激的自发脑活动。滑动窗口方法已成功用于提取 dFNC,但通常假设窗口大小固定。基于隐马尔可夫模型 (HMM) 的方法是估计时变连接的另一种方法。在本文中,我们提出了一种基于高斯 HMM 和高斯图形模型 (GGM) 的稀疏 HMM。在该模型中,时变神经过程表示为离散的大脑状态,由功能连接网络描述。通过对精度矩阵施加稀疏性,可以得到不同功能区域之间可解释的连接。我们的模型可以通过期望最大化 (EM) 和图形最小绝对收缩和选择算子 (glass) 算法进行优化。该模型在模拟血氧水平依赖 (BOLD) 时间序列和 rs-fMRI 数据上进行了验证。结果表明,该模型可以捕捉到静止和突然的大脑活动波动。我们还比较了费城神经发育队列 (PNC) 研究中儿童和年轻人之间的 dFNC 模式。分析和比较了 dFNC 的空间和时间行为。结果为儿童时期的发育轨迹提供了深入了解,并激发了对大脑连接的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验