Department of Biology, Boston University, Boston, MA, USA; School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
Neuropharmacology. 2019 Nov 1;158:107700. doi: 10.1016/j.neuropharm.2019.107700. Epub 2019 Jul 5.
Homeostatic synaptic plasticity (HSP) as an activity-dependent negative feedback regulation of synaptic strength plays important roles in the maintenance of neuronal and neural circuitry stability. A primary cellular substrate for HSP expression is alterations in synaptic accumulation of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). It is widely believed that during HSP, AMPAR accumulation changes with the same proportion at each synapse of a neuron, a process known as synaptic scaling. However, direct evidence on AMPAR synaptic scaling remains largely lacking. Here we report a direct examination of inactivity-induced homeostatic scaling of AMPAR at individual synapse by live-imaging. Surprisingly, instead of uniform up-scaling, a scattered pattern of changes in synaptic AMPAR was observed in cultured rat hippocampal neurons. While the majority of synapses showed up-regulation after activity inhibition, a reduction of AMPAR could be detected in certain synapses. More importantly, among the up-regulated synapses, a wide range of AMPAR changes was observed in synapses of the same neuron. We also found that synapses with higher levels of pre-existing AMPAR tend to be up-regulated by lesser extents, whereas the locations of synapses relative to the soma seem not affecting AMPAR scaling strengths. In addition, we observed strong competition between neighboring synapses during HSP. These results reveal that synaptic AMPAR may not be scaled during HSP, suggesting novel molecular mechanisms for information processing and storage at synapses.
稳态突触可塑性(HSP)作为一种依赖于活动的突触强度负反馈调节,在维持神经元和神经网络稳定性方面发挥着重要作用。HSP 表达的主要细胞基质是谷氨酸能 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)在突触处的积累变化。人们普遍认为,在 HSP 过程中,每个神经元突触的 AMPAR 积累会以相同的比例发生变化,这个过程称为突触缩放。然而,关于 AMPAR 突触缩放的直接证据仍然很大程度上缺乏。在这里,我们通过实时成像直接检查了非活动诱导的 AMPAR 在单个突触处的稳态缩放。令人惊讶的是,在培养的大鼠海马神经元中,观察到的不是统一的上调,而是突触 AMPAR 变化的分散模式。虽然大多数突触在活性抑制后表现出上调,但在某些突触中可以检测到 AMPAR 的减少。更重要的是,在上调的突触中,同一神经元的突触中观察到 AMPAR 变化的广泛范围。我们还发现,具有较高预先存在的 AMPAR 水平的突触往往被上调的幅度较小,而突触相对于胞体的位置似乎不影响 AMPAR 缩放强度。此外,我们在 HSP 期间观察到相邻突触之间存在强烈的竞争。这些结果表明,突触 AMPAR 可能不会在 HSP 期间进行缩放,这表明了突触处信息处理和存储的新分子机制。