Suppr超能文献

使用 3D 显微镜和机器学习评估纳米颗粒的微转移作为靶点。

Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.

Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):14937-14946. doi: 10.1073/pnas.1907646116. Epub 2019 Jul 8.

Abstract

Metastasis of solid tumors is a key determinant of cancer patient survival. Targeting micrometastases using nanoparticles could offer a way to stop metastatic tumor growth before it causes excessive patient morbidity. However, nanoparticle delivery to micrometastases is difficult to investigate because micrometastases are small in size and lie deep within tissues. Here, we developed an imaging and image analysis workflow to analyze nanoparticle-cell interactions in metastatic tumors. This technique combines tissue clearing and 3D microscopy with machine learning-based image analysis to assess the physiology of micrometastases with single-cell resolution and quantify the delivery of nanoparticles within them. We show that nanoparticles access a higher proportion of cells in micrometastases (50% nanoparticle-positive cells) compared with primary tumors (17% nanoparticle-positive cells) because they reside close to blood vessels and require a small diffusion distance to reach all tumor cells. Furthermore, the high-throughput nature of our image analysis workflow allowed us to profile the physiology and nanoparticle delivery of 1,301 micrometastases. This enabled us to use machine learning-based modeling to predict nanoparticle delivery to individual micrometastases based on their physiology. Our imaging method allows researchers to measure nanoparticle delivery to micrometastases and highlights an opportunity to target micrometastases with nanoparticles. The development of models to predict nanoparticle delivery based on micrometastasis physiology could enable personalized treatments based on the specific physiology of a patient's micrometastases.

摘要

实体瘤转移是癌症患者生存的关键决定因素。使用纳米粒子靶向微转移灶可能是在转移瘤生长导致患者过度发病之前阻止其生长的一种方法。然而,由于微转移灶体积小且位于组织深处,因此很难研究纳米粒子向微转移灶的输送。在这里,我们开发了一种成像和图像分析工作流程,以分析转移性肿瘤中的纳米粒子-细胞相互作用。该技术将组织透明化和 3D 显微镜与基于机器学习的图像分析相结合,以单细胞分辨率评估微转移灶的生理学,并量化其中纳米粒子的输送。我们发现,与原发性肿瘤(50%的纳米粒子阳性细胞)相比,纳米粒子能够进入微转移灶中更多比例的细胞(50%的纳米粒子阳性细胞),因为它们靠近血管,需要很小的扩散距离才能到达所有肿瘤细胞。此外,我们的图像分析工作流程具有高通量的特点,允许我们对 1301 个微转移灶的生理学和纳米粒子输送进行分析。这使我们能够使用基于机器学习的建模来根据微转移灶的生理学预测纳米粒子向单个微转移灶的输送。我们的成像方法使研究人员能够测量纳米粒子向微转移灶的输送,并为使用纳米粒子靶向微转移灶提供了机会。基于微转移灶生理学预测纳米粒子输送的模型的开发可以基于患者微转移灶的特定生理学为患者提供个性化治疗。

相似文献

3

引用本文的文献

6
Designing nanotheranostics with machine learning.利用机器学习设计纳米诊疗剂
Nat Nanotechnol. 2024 Dec;19(12):1769-1781. doi: 10.1038/s41565-024-01753-8. Epub 2024 Oct 3.

本文引用的文献

8
Emerging Biological Principles of Metastasis.转移的新兴生物学原理
Cell. 2017 Feb 9;168(4):670-691. doi: 10.1016/j.cell.2016.11.037.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验