Suppr超能文献

利用机器学习设计纳米诊疗剂

Designing nanotheranostics with machine learning.

作者信息

Rao Lang, Yuan Yuan, Shen Xi, Yu Guocan, Chen Xiaoyuan

机构信息

Shenzhen Bay Laboratory, Shenzhen, China.

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Nanotechnol. 2024 Dec;19(12):1769-1781. doi: 10.1038/s41565-024-01753-8. Epub 2024 Oct 3.

Abstract

The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as 'nanotheranostics'. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano-bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.

摘要

传统诊断和治疗方法的固有局限性推动了新兴纳米技术的发展与应用,以便更有效、更安全地管理疾病,在此称为“纳米诊疗学”。尽管该领域已取得许多重大技术成果,但纳米诊疗学作为一种新范式的广泛应用受到了一些特定障碍的阻碍,包括纳米颗粒合成耗时、对纳米-生物相互作用的理解不全面,以及临床转化和商业化所需的化学、制造和控制方面的挑战。作为人工智能的一个关键分支,机器学习(ML)提供了一组能够执行耗时和结果感知任务的工具,从而为纳米诊疗学带来了独特机遇。本综述总结了这一新兴的机器学习辅助纳米诊疗学领域的进展与挑战,并讨论了利用可靠数据集和先进机器学习模型开发下一代纳米诊疗学以给患者带来更好临床益处的机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验