1Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON Canada M5S 3G8.
Hannam Fertility Centre, 160 Bloor St. East, Toronto, ON Canada M4W 3R2.
Commun Biol. 2019 Jul 3;2:250. doi: 10.1038/s42003-019-0491-6. eCollection 2019.
Despite the importance of sperm DNA to human reproduction, currently no method exists to assess individual sperm DNA quality prior to clinical selection. Traditionally, skilled clinicians select sperm based on a variety of morphological and motility criteria, but without direct knowledge of their DNA cargo. Here, we show how a deep convolutional neural network can be trained on a collection of ~1000 sperm cells of known DNA quality, to predict DNA quality from brightfield images alone. Our results demonstrate moderate correlation (bivariate correlation ~0.43) between a sperm cell image and DNA quality and the ability to identify higher DNA integrity cells relative to the median. This deep learning selection process is directly compatible with current, manual microscopy-based sperm selection and could assist clinicians, by providing rapid DNA quality predictions (under 10 ms per cell) and sperm selection within the 86 percentile from a given sample.
尽管精子 DNA 对人类生殖至关重要,但目前尚无方法在临床选择前评估个体精子 DNA 质量。传统上,熟练的临床医生根据各种形态和运动学标准选择精子,但对其 DNA 含量却一无所知。在这里,我们展示了如何在已知 DNA 质量的约 1000 个精子细胞的集合上训练深度卷积神经网络,以便仅从明场图像预测 DNA 质量。我们的结果表明,精子细胞图像与 DNA 质量之间存在中度相关性(双变量相关性约为 0.43),并且能够识别出相对于中位数具有更高 DNA 完整性的细胞。这种深度学习选择过程与当前基于手动显微镜的精子选择直接兼容,并可通过提供快速的 DNA 质量预测(每个细胞不到 10 毫秒)和从给定样本中选择 86%的精子来协助临床医生。