人类精子的3D + t多焦点成像数据集
3D+t Multifocal Imaging Dataset of Human Sperm.
作者信息
Montoya Fernando, Bribiesca-Sánchez Andrés, Hernández-Herrera Paul, Díaz-Guerrero Dan Sidney, Gonzalez-Cota Ana Laura, Bloomfield-Gadelha Hermes, Darszon Alberto, Corkidi Gabriel
机构信息
Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, CDMX, Ciudad de México, México.
出版信息
Sci Data. 2025 May 18;12(1):814. doi: 10.1038/s41597-025-05177-4.
Understanding human fertility requires dynamic and three-dimensional (3D) analysis of sperm movement, which extends beyond the capabilities of traditional datasets focused primarily on two-dimensional sperm motility or static morphological characteristics. To address this limitation, we introduce the 3D+t Multifocal Imaging Dataset of Human Sperm (3D-SpermVid), a repository comprising 121 multifocal video-microscopy hyperstacks of freely swimming sperm cells, incubated under non-capacitating conditions (NCC) and capacitating conditions (CC). This collection enables detailed observation and analysis of 3D sperm flagellar motility patterns over time, offering novel insights into the capacitation process and its implications for fertility. Data were captured using a multifocal imaging (MFI) system based on an optical microscope equipped with a piezoelectric device that adjusts focus at various heights, recording sperm movement in a volumetric space. By making this data publicly available, we aim to enable applications in deep learning and pattern recognition to uncover hidden flagellar motility patterns, fostering significant advancements in understanding 3D sperm morphology and dynamics, and developing new diagnostic tools for assessing male fertility, as well as assisting in the self-organizaton mechanisms driving spontaneous motility and navigation in 3D.
理解人类生育能力需要对精子运动进行动态和三维(3D)分析,这超出了主要关注二维精子活力或静态形态特征的传统数据集的能力范围。为了解决这一局限性,我们引入了人类精子的3D+t多焦点成像数据集(3D-SpermVid),这是一个包含121个自由游动精子细胞的多焦点视频显微镜超堆栈的储存库,这些精子细胞在非获能条件(NCC)和获能条件(CC)下进行培养。该数据集能够随时间对3D精子鞭毛运动模式进行详细观察和分析,为获能过程及其对生育能力的影响提供了新的见解。数据是使用基于光学显微镜的多焦点成像(MFI)系统采集的,该显微镜配备了一个可在不同高度调节焦点的压电装置,可在三维空间中记录精子运动。通过公开这些数据,我们旨在推动深度学习和模式识别方面的应用,以揭示隐藏的鞭毛运动模式,促进在理解3D精子形态和动力学方面取得重大进展,并开发用于评估男性生育能力的新诊断工具,以及辅助驱动3D中自发运动和导航的自组织机制。