Im Hyungsoon, Pathania Divya, McFarland Philip J, Sohani Aliyah R, Degani Ismail, Allen Matthew, Coble Benjamin, Kilcoyne Aoife, Hong Seonki, Rohrer Lucas, Abramson Jeremy S, Dryden-Peterson Scott, Fexon Lioubov, Pivovarov Misha, Chabner Bruce, Lee Hakho, Castro Cesar M, Weissleder Ralph
Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
Nat Biomed Eng. 2018 Sep;2(9):666-674. doi: 10.1038/s41551-018-0265-3. Epub 2018 Jul 23.
The identification of patients with aggressive cancer who require immediate therapy is a health challenge in low-income and middle-income countries. Limited pathology resources, high healthcare costs and large-case loads call for the development of advanced standalone diagnostics. Here, we report and validate an automated, low-cost point-of-care device for the molecular diagnosis of aggressive lymphomas. The device uses contrast-enhanced microholography and a deep-learning algorithm to directly analyse percutaneously obtained fine-needle aspirates. We show the feasibility and high accuracy of the device in cells, as well as the prospective validation of the results in 40 patients clinically referred for image-guided aspiration of nodal mass lesions suspicious for lymphoma. Automated analysis of human samples with the portable device should allow for the accurate classification of patients with benign and malignant adenopathy.
在低收入和中等收入国家,识别需要立即治疗的侵袭性癌症患者是一项健康挑战。病理学资源有限、医疗成本高昂以及病例数量众多,都需要开发先进的独立诊断方法。在此,我们报告并验证了一种用于侵袭性淋巴瘤分子诊断的自动化、低成本即时检测设备。该设备使用对比增强显微全息术和深度学习算法,直接分析经皮获取的细针穿刺抽吸物。我们展示了该设备在细胞中的可行性和高准确性,以及对40例临床转诊进行影像引导下可疑淋巴瘤结节肿块穿刺抽吸的患者结果的前瞻性验证。使用该便携式设备对人体样本进行自动分析,应能准确分类良性和恶性腺病患者。