Suppr超能文献

神经元模型在电流钳和电压钳中对振荡输入的频率依赖性反应。

Frequency-dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp.

作者信息

Rotstein Horacio G, Nadim Farzan

机构信息

Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA.

Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

出版信息

Biol Cybern. 2019 Aug;113(4):373-395. doi: 10.1007/s00422-019-00802-z. Epub 2019 Jul 8.

Abstract

Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential ([Formula: see text]) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording [Formula: see text] in response to a sinusoidal current ([Formula: see text]), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control [Formula: see text] with a sinusoidal input at different frequencies [[Formula: see text]] and measure the total membrane current ([Formula: see text]). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [[Formula: see text]], V-clamp measures admittance [[Formula: see text]]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: [Formula: see text]. However, nonlinear model neurons produce different values for Z and [Formula: see text]. In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.

摘要

神经元中动作电位的产生取决于膜电位阈值,因此取决于阈下输入如何影响该电压。例如,在振荡网络中,许多神经元类型已被证明会产生膜电位([公式:见正文])共振:对非零频率的振荡输入产生最大阈下响应。共振通常通过记录[公式:见正文]来测量,该记录是对以不同频率(f)施加的正弦电流([公式:见正文])的响应,这种实验设置称为电流钳(I - clamp)。然而,最近的几项研究使用电压钳(V - clamp)方法,通过在不同频率[[公式:见正文]]下的正弦输入来控制[公式:见正文],并测量总膜电流([公式:见正文])。这两种方法遵循不同维度的微分方程组,虽然电流钳提供了电阻抗[[公式:见正文]]的测量值,但电压钳测量的是导纳[[公式:见正文]]。我们分析了这两种测量技术之间的关系。我们表明,尽管维度不同,但在线性系统中这两种测量是等效的:[公式:见正文]。然而,非线性模型神经元会产生不同的Z和[公式:见正文]值。特别是,电压方程中的非线性在这两个量之间产生的差异比描述激活和失活动力学的恢复变量方程中的非线性产生的差异大得多。神经元本质上是非线性的,值得注意的是,对于具有放大共振的离子电流,电压钳技术严重低估了电流钳响应。我们使用蟹口胃神经节中的PD神经元通过实验证明了这种差异。这些发现对探索神经元振荡细胞机制的研究人员具有指导意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e5/6689413/2080d5ba59f8/nihms-1533956-f0001.jpg

相似文献

8
Subthreshold membrane resonance in neocortical neurons.新皮层神经元的阈下膜共振
J Neurophysiol. 1996 Aug;76(2):683-97. doi: 10.1152/jn.1996.76.2.683.

本文引用的文献

6
High-Frequency Resonance in the Gerbil Medial Superior Olive.沙鼠内侧上橄榄核中的高频共振
PLoS Comput Biol. 2016 Nov 10;12(11):e1005166. doi: 10.1371/journal.pcbi.1005166. eCollection 2016 Nov.
8
Ionic Basis for Membrane Potential Resonance in Neurons of the Inferior Olive.下橄榄核神经元膜电位共振的离子基础。
Cell Rep. 2016 Jul 26;16(4):994-1004. doi: 10.1016/j.celrep.2016.06.053. Epub 2016 Jul 14.
10
Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.双斑蟋外周听觉系统中的放电率共振
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Nov;201(11):1075-90. doi: 10.1007/s00359-015-1036-1. Epub 2015 Aug 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验