Rotstein Horacio G, Nadim Farzan
Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA.
Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Biol Cybern. 2019 Aug;113(4):373-395. doi: 10.1007/s00422-019-00802-z. Epub 2019 Jul 8.
Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential ([Formula: see text]) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording [Formula: see text] in response to a sinusoidal current ([Formula: see text]), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control [Formula: see text] with a sinusoidal input at different frequencies [[Formula: see text]] and measure the total membrane current ([Formula: see text]). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [[Formula: see text]], V-clamp measures admittance [[Formula: see text]]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: [Formula: see text]. However, nonlinear model neurons produce different values for Z and [Formula: see text]. In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.
神经元中动作电位的产生取决于膜电位阈值,因此取决于阈下输入如何影响该电压。例如,在振荡网络中,许多神经元类型已被证明会产生膜电位([公式:见正文])共振:对非零频率的振荡输入产生最大阈下响应。共振通常通过记录[公式:见正文]来测量,该记录是对以不同频率(f)施加的正弦电流([公式:见正文])的响应,这种实验设置称为电流钳(I - clamp)。然而,最近的几项研究使用电压钳(V - clamp)方法,通过在不同频率[[公式:见正文]]下的正弦输入来控制[公式:见正文],并测量总膜电流([公式:见正文])。这两种方法遵循不同维度的微分方程组,虽然电流钳提供了电阻抗[[公式:见正文]]的测量值,但电压钳测量的是导纳[[公式:见正文]]。我们分析了这两种测量技术之间的关系。我们表明,尽管维度不同,但在线性系统中这两种测量是等效的:[公式:见正文]。然而,非线性模型神经元会产生不同的Z和[公式:见正文]值。特别是,电压方程中的非线性在这两个量之间产生的差异比描述激活和失活动力学的恢复变量方程中的非线性产生的差异大得多。神经元本质上是非线性的,值得注意的是,对于具有放大共振的离子电流,电压钳技术严重低估了电流钳响应。我们使用蟹口胃神经节中的PD神经元通过实验证明了这种差异。这些发现对探索神经元振荡细胞机制的研究人员具有指导意义。