Suppr超能文献

连续时间因果中介分析。

Continuous-time causal mediation analysis.

机构信息

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.

Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio.

出版信息

Stat Med. 2019 Sep 30;38(22):4334-4347. doi: 10.1002/sim.8300. Epub 2019 Jul 8.

Abstract

While causal mediation analysis has seen considerable recent development for a single measured mediator (M) and final outcome (Y), less attention has been given to repeatedly measured M and Y. Previous methods have typically involved discrete-time models that limit inference to the particular measurement times used and do not recognize the continuous nature of the mediation process over time. To overcome such limitations, we present a new continuous-time approach to causal mediation analysis that uses a differential equations model in a potential outcomes framework to describe the causal relationships among model variables over time. A connection between the differential equation models and standard repeated measures models is made to provide convenient model formulation and fitting. A continuous-time extension of the sequential ignorability assumption allows for identifiable natural direct and indirect effects as functions of time, with estimation based on a two-step approach to model fitting in conjunction with a continuous-time mediation formula. Novel features include a measure of an overall mediation effect based on the "area between the curves," and an approach for predicting the effects of new interventions. Simulation studies show good properties of estimators and the new methodology is applied to data from a cohort study to investigate sugary drink consumption as a mediator of the effect of socioeconomic status on dental caries in children.

摘要

虽然因果中介分析在单一测量中介变量 (M) 和最终结果 (Y) 方面取得了相当大的进展,但对于反复测量的 M 和 Y 关注较少。以前的方法通常涉及离散时间模型,这些模型将推断限制在使用的特定测量时间内,并且不承认随时间推移中介过程的连续性。为了克服这些限制,我们提出了一种新的因果中介分析的连续时间方法,该方法在潜在结果框架中使用微分方程模型来描述模型变量随时间的因果关系。微分方程模型和标准重复测量模型之间建立了联系,以提供方便的模型公式和拟合。连续时间扩展的顺序可忽略性假设允许将时间函数的自然直接和间接效应作为可识别的效应,基于两步模型拟合方法和连续时间中介公式进行估计。新的特点包括基于“曲线之间的面积”的整体中介效应度量,以及一种用于预测新干预措施效果的方法。模拟研究表明了估计量的良好性质,并且该新方法应用于队列研究的数据,以调查含糖饮料消费作为社会经济地位对儿童龋齿影响的中介作用。

相似文献

1
Continuous-time causal mediation analysis.连续时间因果中介分析。
Stat Med. 2019 Sep 30;38(22):4334-4347. doi: 10.1002/sim.8300. Epub 2019 Jul 8.
2
Causal mediation analysis with a latent mediator.具有潜在中介变量的因果中介分析。
Biom J. 2016 May;58(3):535-48. doi: 10.1002/bimj.201400124. Epub 2015 Sep 13.
5
Sensitivity analyses for parametric causal mediation effect estimation.参数因果中介效应估计的敏感性分析。
Biostatistics. 2015 Apr;16(2):339-51. doi: 10.1093/biostatistics/kxu048. Epub 2014 Nov 12.
7
Generalized causal mediation analysis.广义因果中介分析
Biometrics. 2011 Sep;67(3):1028-38. doi: 10.1111/j.1541-0420.2010.01547.x. Epub 2011 Feb 9.
10
Causal mediation analysis with mediator values below an assay limit.中介值低于检测限的因果中介分析。
Stat Med. 2024 May 30;43(12):2299-2313. doi: 10.1002/sim.10065. Epub 2024 Mar 31.

本文引用的文献

2
Mediation analysis with time varying exposures and mediators.具有随时间变化暴露因素和中介变量的中介分析。
J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.
3
Causal mediation analysis with multiple causally non-ordered mediators.具有多个因果无序中介变量的因果中介分析。
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
4
Causal mediation analysis for longitudinal data with exogenous exposure.具有外生暴露的纵向数据的因果中介分析。
Biostatistics. 2016 Jan;17(1):122-34. doi: 10.1093/biostatistics/kxv029. Epub 2015 Aug 13.
5
Sensitivity analyses for parametric causal mediation effect estimation.参数因果中介效应估计的敏感性分析。
Biostatistics. 2015 Apr;16(2):339-51. doi: 10.1093/biostatistics/kxu048. Epub 2014 Nov 12.
6
Causal mediation analysis with multiple mediators.具有多个中介变量的因果中介分析。
Biometrics. 2015 Mar;71(1):1-14. doi: 10.1111/biom.12248. Epub 2014 Oct 28.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验