无分布中介分析在有混杂的非线性模型中的应用。

Distribution-free mediation analysis for nonlinear models with confounding.

机构信息

Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA.

出版信息

Epidemiology. 2012 Nov;23(6):879-88. doi: 10.1097/EDE.0b013e31826c2bb9.

Abstract

Recently, researchers have used a potential-outcome framework to estimate causally interpretable direct and indirect effects of an intervention or exposure on an outcome. One approach to causal-mediation analysis uses the so-called mediation formula to estimate the natural direct and indirect effects. This approach generalizes the classical mediation estimators and allows for arbitrary distributions for the outcome variable and mediator. A limitation of the standard (parametric) mediation formula approach is that it requires a specified mediator regression model and distribution; such a model may be difficult to construct and may not be of primary interest. To address this limitation, we propose a new method for causal-mediation analysis that uses the empirical distribution function, thereby avoiding parametric distribution assumptions for the mediator. To adjust for confounders of the exposure-mediator and exposure-outcome relationships, inverse-probability weighting is incorporated based on a supplementary model of the probability of exposure. This method, which yields the estimates of the natural direct and indirect effects for a specified reference group, is applied to data from a cohort study of dental caries in very-low-birth-weight adolescents to investigate the oral-hygiene index as a possible mediator. Simulation studies show low bias in the estimation of direct and indirect effects in a variety of distribution scenarios, whereas the standard mediation formula approach can be considerably biased when the distribution of the mediator is incorrectly specified.

摘要

最近,研究人员使用潜在结果框架来估计干预或暴露对结果的因果可解释的直接和间接效应。因果中介分析的一种方法是使用所谓的中介公式来估计自然直接和间接效应。这种方法推广了经典的中介估计量,并允许结果变量和中介变量具有任意分布。标准(参数)中介公式方法的一个局限性是它需要指定的中介回归模型和分布;这样的模型可能很难构建,并且可能不是主要关注的。为了解决这个限制,我们提出了一种新的因果中介分析方法,该方法使用经验分布函数,从而避免了对中介的参数分布假设。为了调整暴露-中介和暴露-结果关系的混杂因素,根据暴露概率的补充模型进行逆概率加权。这种方法为指定的参考组生成自然直接和间接效应的估计值,应用于极低出生体重青少年龋齿队列研究的数据,以调查口腔卫生指数作为可能的中介。模拟研究表明,在各种分布情况下,直接和间接效应的估计偏差较小,而当中介的分布不正确指定时,标准的中介公式方法可能会有很大的偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索