Suppr超能文献

现代双散射质子治疗束流传输系统中束流修正装置产生的中子。

Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

作者信息

Pérez-Andújar Angélica, Newhauser Wayne D, Deluca Paul M

机构信息

University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705-2221, USA.

出版信息

Phys Med Biol. 2009 Feb 21;54(4):993-1008. doi: 10.1088/0031-9155/54/4/012. Epub 2009 Jan 16.

Abstract

In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

摘要

在这项工作中,对被动束流传输系统中的中子产生情况进行了研究。当质子束与治疗头中的束流整形装置相互作用时,会产生包括中子在内的次级粒子。全身受到杂散中子照射可能会增加患者在放疗数年或数十年后患放射性癌症的风险。我们模拟了采用双散射技术的被动质子束流传输系统,以确定在200 MeV质子能量下的中子产生情况和能量分布。具体而言,我们研究了每个治疗吸收剂量的中子吸收剂量、每个源粒子的中子吸收剂量以及喷嘴周围不同位置的中子能谱。我们还研究了沿喷嘴中心轴的中子产生情况。使用MCNPX蒙特卡罗代码模拟了吸收剂量和中子能谱。模拟结果表明,范围调制轮(RMW)是喷嘴内任何束流扩展装置中最强的中子源。这一发现表明,优化RMW组件的设计可能会有帮助,例如通过添加局部屏蔽,以抑制中子对喷嘴内部件的损伤,并减小治疗室的屏蔽厚度。模拟还表明,患者所接受的中子剂量主要来自位于患者上游的场定义准直器组件中产生的中子。

相似文献

1
Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.
Phys Med Biol. 2009 Feb 21;54(4):993-1008. doi: 10.1088/0031-9155/54/4/012. Epub 2009 Jan 16.
3
Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault.
Phys Med Biol. 2009 Nov 21;54(22):6943-57. doi: 10.1088/0031-9155/54/22/013. Epub 2009 Nov 4.
4
A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
Z Med Phys. 2021 May;31(2):215-228. doi: 10.1016/j.zemedi.2021.01.001. Epub 2021 Feb 20.
6
Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
Radiat Prot Dosimetry. 2015 Feb;163(2):148-59. doi: 10.1093/rpd/ncu153. Epub 2014 May 12.
7
Monte Carlo calculations in support of the commissioning of the Northeast Proton Therapy Center.
Australas Phys Eng Sci Med. 2003 Dec;26(4):156-61. doi: 10.1007/BF03179175.
8
Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
Phys Med Biol. 2005 Aug 21;50(16):3859-73. doi: 10.1088/0031-9155/50/16/014. Epub 2005 Aug 2.
10
Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
Radiat Prot Dosimetry. 2014 Oct;161(1-4):417-21. doi: 10.1093/rpd/nct289. Epub 2013 Nov 19.

引用本文的文献

3
Investigation the Performance Accuracy of Contoured Dual Ring Double Scatterer System for Flat Beam Generation at Proton Therapy.
J Biomed Phys Eng. 2023 Apr 1;13(2):107-116. doi: 10.31661/jbpe.v0i0.2002-1066. eCollection 2023 Apr.
4
Determining Out-of-Field Doses and Second Cancer Risk From Proton Therapy in Young Patients-An Overview.
Front Oncol. 2022 May 31;12:892078. doi: 10.3389/fonc.2022.892078. eCollection 2022.
5
Evaluation of the dosimetric effect of scattered protons in clinical practice in passive scattering proton therapy.
J Appl Clin Med Phys. 2021 Jun;22(6):104-118. doi: 10.1002/acm2.13284. Epub 2021 May 25.
7
Ambient neutron and photon dose equivalent H*(10) around a pencil beam scanning proton therapy facility.
Br J Radiol. 2019 Oct;92(1102):20190382. doi: 10.1259/bjr.20190382. Epub 2019 Jul 23.
8
Technical Note: Optimization of spot and trimmer position during dynamically collimated proton therapy.
Med Phys. 2019 Apr;46(4):1922-1930. doi: 10.1002/mp.13441. Epub 2019 Mar 5.
10
The physics of proton therapy.
Phys Med Biol. 2015 Apr 21;60(8):R155-209. doi: 10.1088/0031-9155/60/8/R155. Epub 2015 Mar 24.

本文引用的文献

1
Radiological use of fast protons.
Radiology. 1946 Nov;47(5):487-91. doi: 10.1148/47.5.487.
2
Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer.
Phys Med Biol. 2008 Apr 21;53(8):2131-47. doi: 10.1088/0031-9155/53/8/009. Epub 2008 Mar 27.
3
Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer.
Phys Med Biol. 2008 Mar 21;53(6):1677-88. doi: 10.1088/0031-9155/53/6/012. Epub 2008 Feb 29.
4
Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy.
Phys Med Biol. 2008 Mar 21;53(6):1581-94. doi: 10.1088/0031-9155/53/6/005. Epub 2008 Feb 25.
5
Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
Phys Med Biol. 2008 Jan 21;53(2):487-504. doi: 10.1088/0031-9155/53/2/014. Epub 2007 Dec 28.
8
Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
Phys Med Biol. 2007 Aug 7;52(15):4569-84. doi: 10.1088/0031-9155/52/15/014. Epub 2007 Jul 10.
9
Monte Carlo study of neutron dose equivalent during passive scattering proton therapy.
Phys Med Biol. 2007 Aug 7;52(15):4481-96. doi: 10.1088/0031-9155/52/15/008. Epub 2007 Jun 27.
10
A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer.
Radiother Oncol. 2007 May;83(2):110-22. doi: 10.1016/j.radonc.2007.04.007. Epub 2007 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验