Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China.
Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Int J Mol Sci. 2019 Jul 8;20(13):3354. doi: 10.3390/ijms20133354.
Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.
细胞 纤维体是一种细胞外超分子多酶复合物,能够有效地降解植物细胞壁中的纤维素和半纤维素。细胞纤维体的结构和独特的亚基排列可以促进其对不溶性底物的附着,从而为单个微生物细胞提供直接利用纤维素生物质的能力。在揭示细胞纤维体的结构和功能方面已经取得了重大进展,但对于那些来自农业作物生物炼制预处理的生物纤维体,仍然存在对细胞纤维体与木质纤维素底物之间相互作用的认识空白。木质纤维素的细胞纤维体糖化受到各种与底物相关的物理和化学因素的影响,包括天然(未处理)木质素含量、预处理去除木质素和木聚糖的程度、木质素结构、底物大小,当然还有底物的纤维素孔隙表面积或可及性。在此,我们总结了细胞纤维体的结构、与底物相关的因素和宿主细胞中的调节机制。我们讨论了基于木质纤维素原料的生物炼制中细胞纤维体诱导水解的特定策略的最新进展,这些策略可以在反应动力学和整体进展中发挥作用。