Department of Chemical Engineering, McGill University, Montréal, Canada.
Biofabrication. 2019 Aug 13;11(4):045013. doi: 10.1088/1758-5090/ab30b4.
Multicellular aggregated tissues have grown critically important in benchtop biomedical research, both as stand-alone spheroids and when assembled into larger bioengineered constructs. However, typical systems for aggregate formation are limited in their capacity to reliably handle such cultures at various experimental stages in a broadly accessible, consistent, and scalable manner. In this work, we develop a broadly versatile all-in-one biofabrication strategy to form uniform, spherical, multicellular aggregates that can be maintained at precisely defined positions for analysis or transfer into a larger tissue. The 3D-printed MicroPocket Culture (MPoC) system consists of an array of simple geometry-based valves in a polyacrylamide hydrogel, and is able to produce hundreds of uniformly-sized aggregates in standard tissue culture well plates, using simple tools that are readily available in all standard biological wet-labs. The model breast cancer aggregates formed in these experiments are retained in defined positions on chip during all liquid handling steps required to stimulate, label, and image the experiment, enabling high-throughput studies on this culture model. Furthermore, MPoCs enable robust formation of aggregates in cell types that do not conventionally form such structures. Finally, we demonstrate that this single platform can also be used to generate complex 3D tissues from the precisely-positioned aggregate building blocks. To highlight the unique and broad versatility of this technique, we develop a simple 3D invasion assay and show that cancer cells preferentially migrate towards nearby model tumors; demonstrating the importance of spatial precision when engineering 3D tissues. Together, this platform presents a broadly accessible and uniquely capable system with which to develop advanced aggregate-based models for tissue engineering, fundamental research, and applied drug discovery.
多细胞聚集组织在台式生物医学研究中变得至关重要,无论是作为独立的球体还是组装成更大的生物工程结构。然而,典型的聚集形成系统在各种实验阶段以广泛可及、一致和可扩展的方式可靠地处理此类培养物的能力有限。在这项工作中,我们开发了一种广泛通用的一体化生物制造策略,以形成均匀的球形多细胞聚集物,可以将其精确地保持在特定位置进行分析或转移到更大的组织中。3D 打印的微口袋培养(MPoC)系统由聚丙酰胺水凝胶中的一系列基于简单几何形状的阀组成,使用所有标准生物湿实验室中都容易获得的简单工具,能够在标准组织培养皿中产生数百个均匀尺寸的聚集物。在实验所需的所有液体处理步骤中,这些实验中形成的模型乳腺癌聚集物保留在芯片上的定义位置,从而能够对该培养模型进行高通量研究。此外,MPoC 能够使通常不会形成此类结构的细胞类型稳健地形成聚集物。最后,我们证明,这个单一平台也可以用于从精确定位的聚集物构建块生成复杂的 3D 组织。为了突出该技术的独特和广泛通用性,我们开发了一种简单的 3D 侵袭测定法,并表明癌细胞优先向附近的模型肿瘤迁移;当工程 3D 组织时,证明了空间精度的重要性。总之,该平台提供了一种广泛可及且功能独特的系统,可用于开发用于组织工程、基础研究和应用药物发现的先进基于聚集物的模型。