Chen Lei, Liu Wei, Shen Dongyi, Liu Yuehan, Zhou Zhihao, Liang Xiaogan, Wan Wenjie
The State Key Laboratory of Advanced Optical Communication Systems and Networks Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, the University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Nanoscale. 2019 Jul 28;11(28):13558-13566. doi: 10.1039/c9nr04906a. Epub 2019 Jul 10.
Interparticle forces play a crucial role in nanoparticle-based nanoscience and nanoengineering for synthesizing new materials, manipulating nanoscale structures, understanding biological processes and ultrasensitive sensing. Complicated by the fluid-dynamical and chemical nature of the liquid environment of nanoparticles, previous attempts are limited to electromagnetic and chemical methods. Alternatively, optically induced forces provide a convenient and fabrication-free route to manipulate nanoparticles at the nanoscale. Here we demonstrate a new double laser trapping scheme for metallic nano-aggregation by inducing strong near-field optical interparticle forces without any chemical agents or complicated fabrication processes. These induced optical forces arising from strong localized plasmon resonance strongly depend on the interparticle separation well beyond the diffraction limit and the polarization of the incident laser field. We examine such sub-resolved interparticle separation in trapped nanoaggregates by measuring surface-enhanced Raman scattering, and further demonstrate the single-molecule sensitivity by implementing such nanostructures. This new technique opens a new avenue for all-optical manipulation of nanomaterials as well as ultra-sensitive bio-chemical sensing applications.
粒子间作用力在基于纳米粒子的纳米科学与纳米工程中对于合成新材料、操控纳米尺度结构、理解生物过程以及超灵敏传感起着至关重要的作用。由于纳米粒子所处液体环境的流体动力学和化学性质较为复杂,以往的尝试仅限于电磁和化学方法。相比之下,光诱导力为在纳米尺度上操控纳米粒子提供了一条便捷且无需制造工艺的途径。在此,我们展示了一种用于金属纳米聚集的新型双激光捕获方案,通过诱导强近场光学粒子间作用力,无需任何化学试剂或复杂的制造工艺。这些由强局域表面等离子体共振产生的诱导光学力强烈依赖于远超出衍射极限的粒子间间距以及入射激光场的偏振。我们通过测量表面增强拉曼散射来研究捕获的纳米聚集体中这种亚分辨的粒子间间距,并通过实现此类纳米结构进一步展示了单分子灵敏度。这项新技术为纳米材料的全光操控以及超灵敏生化传感应用开辟了一条新途径。