Suppr超能文献

电荷转移带隙作为锂离子电池锂无序岩盐阴极中滞后现象的指标。

Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries.

作者信息

Jacquet Quentin, Iadecola Antonella, Saubanère Matthieu, Li Haifeng, Berg Erik J, Rousse Gwenaëlle, Cabana Jordi, Doublet Marie-Liesse, Tarascon Jean-Marie

机构信息

Chaire de Chimie du Solide et de l'Energie, UMR 8260 , Collège de France , 11 place Marcelin Berthelot , 75231 Paris CEDEX 05, France.

Sorbonne Université , 4 place Jussieu , F-75005 Paris , France.

出版信息

J Am Chem Soc. 2019 Jul 24;141(29):11452-11464. doi: 10.1021/jacs.8b11413. Epub 2019 Jul 10.

Abstract

Disordered rock salt cathodes showing both anionic and cationic redox are being extensively studied for their very high energy storage capacity. Mn-based disordered rock salt compounds show much higher energy efficiency compared to the Ni-based materials as a result of the different voltage hysteresis, 0.5 and 2 V, respectively. To understand the origin of this difference, we herein report the design of two model compounds, LiNiTaO and LiMnTaO, and study their charge compensation mechanism through the uptake and removal of Li via an arsenal of analytical techniques. We show that the different voltage hysteresis with Ni or Mn substitution is due to the different reduction potential for anionic redox. We rationalized such a finding by DFT calculations and propose this phenomenon to be nested in the smaller charge transfer band gap of the Ni-based compounds compared to that of the Mn ones. Altogether, these findings provide vital guidelines for designing high-capacity disordered rock salt cathode materials based on anionic redox activity for the next generation of Li ion batteries.

摘要

具有阴离子和阳离子氧化还原特性的无序岩盐阴极因其极高的能量存储容量而受到广泛研究。由于电压滞后不同,分别为0.5伏和2伏,锰基无序岩盐化合物相比镍基材料显示出更高的能量效率。为了解这种差异的根源,我们在此报告了两种模型化合物LiNiTaO和LiMnTaO的设计,并通过一系列分析技术对锂的嵌入和脱嵌过程研究它们的电荷补偿机制。我们表明,镍或锰取代导致的不同电压滞后是由于阴离子氧化还原的还原电位不同。我们通过密度泛函理论计算对这一发现进行了合理化解释,并提出这种现象源于镍基化合物的电荷转移带隙比锰基化合物更小。总之,这些发现为基于阴离子氧化还原活性设计下一代锂离子电池的高容量无序岩盐阴极材料提供了重要指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验