Taylor Zoe N, Perez Arnaud J, Coca-Clemente José A, Braga Filipe, Drewett Nicholas E, Pitcher Michael J, Thomas William J, Dyer Matthew S, Collins Christopher, Zanella Marco, Johnson Timothy, Day Sarah, Tang Chiu, Dhanak Vinod R, Claridge John B, Hardwick Laurence J, Rosseinsky Matthew J
Stephenson Institute for Renewable Energy , University of Liverpool , Chadwick Building, Peach Street , Liverpool L69 7ZF , United Kingdom.
Diamond Light Source , Diamond House , Harwell Oxford, Didcot , Oxfordshire OX11 0DE , United Kingdom.
J Am Chem Soc. 2019 May 8;141(18):7333-7346. doi: 10.1021/jacs.8b13633. Epub 2019 Apr 24.
Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNiMnCoO rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d cations. However, Li-rich rock salt oxides with high valent d cations such as Nb and Mo show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, LiNiWO (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The LiNiWO (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni/Ni redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d W cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d cation associates localized anion-anion bonding with the anion redox capacity.
具有岩盐结构的多元锂氧化物作为可充电锂离子电池的阴极材料具有重要的技术意义。目前的先进阴极材料,如LiNiMnCoO,依靠地球上储量丰富的过渡金属阳离子的氧化还原循环来提供电荷容量。最近,在富锂岩盐氧化物中使用氧阴离子作为氧化还原中心的可能性已被确立为设计具有更高容量(>200 mAh/g)阴极材料的新范例。为了增加锂含量并从氧衍生状态获取电子,这些材料通常需要处于高氧化态的过渡金属,使用d阳离子很容易实现这一点。然而,具有高价d阳离子(如Nb和Mo)的富锂岩盐氧化物在充电和放电之间表现出极高的电压滞后现象,其原因尚未得到研究。在这项工作中,我们研究了一系列富锂化合物LiNiWO(0 ≤ x ≤ 0.25),它们采用了两种新的、不同的岩盐结构阳离子有序变体。LiNiWO(x = 0.15)相具有200 mAh/g的大可逆容量,且未涉及Ni/Ni氧化还原对,这意味着超过三分之二的容量归因于阴离子氧化还原,并且具有良好的循环稳定性。5d W阳离子的存在导致了与阴离子氧化还原相关的广泛(>2 V)电压滞后。我们提供了实验证据,证明形成了强稳定的局域O - O单键,这解释了放电时还原材料所需的能量损失。高价d阳离子将局域阴离子 - 阴离子键合与阴离子氧化还原容量联系起来。