School of Life Sciences , University of Technology Sydney , Ultimo , NSW 2007 , Australia.
PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark.
Langmuir. 2019 Jul 30;35(30):9944-9953. doi: 10.1021/acs.langmuir.9b01240. Epub 2019 Jul 19.
ATP is a fundamental intracellular molecule and is thought to diffuse freely throughout the cytosol. Evidence obtained from nucleotide-sensing sarcolemmal ion channels and red blood cells, however, suggest that ATP is compartmentalized or buffered, especially beneath the sarcolemma, but no definitive mechanism for restricted diffusion or potential buffering system has been postulated. In this study, we provide evidence from alterations to membrane dipole potential, membrane conductance, changes in enthalpy of phospholipid phase transition, and from free energy calculations that ATP associates with phospholipid bilayers. Furthermore, all-atom molecular dynamics simulations show that ATP can form aggregates in the aqueous phase at high concentrations. ATP interaction with membranes provides a new model to understand the diffusion of ATP through the cell. Coupled with previous reports of diffusion restriction in the subsarcolemmal space, these findings support the existence of compartmentalized or buffered pools of ATP.
ATP 是一种基本的细胞内分子,被认为可以在细胞质中自由扩散。然而,从核苷酸感应的肌细胞膜离子通道和红细胞中获得的证据表明,ATP 被分隔或缓冲,特别是在肌细胞膜下,但尚未提出限制扩散或潜在缓冲系统的明确机制。在这项研究中,我们从膜偶极势、膜电导、磷脂相变焓的变化以及自由能计算的改变提供了证据,表明 ATP 与磷脂双层结合。此外,全原子分子动力学模拟表明,ATP 可以在高浓度下在水相中形成聚集体。ATP 与膜的相互作用为理解 ATP 通过细胞的扩散提供了一个新的模型。结合先前报道的在肌细胞膜下空间的扩散限制,这些发现支持存在分隔或缓冲的 ATP 池。