Suppr超能文献

使用大规模的蛋白质折叠和稳定性测量技术发现氙蛋白互作组。

Discovery of the Xenon-Protein Interactome Using Large-Scale Measurements of Protein Folding and Stability.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.

Program in Computational Biology and Bioinformatics, Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States.

出版信息

J Am Chem Soc. 2022 Mar 9;144(9):3925-3938. doi: 10.1021/jacs.1c11900. Epub 2022 Feb 25.

Abstract

The intermolecular interactions of noble gases in biological systems are associated with numerous biochemical responses, including apoptosis, inflammation, anesthesia, analgesia, and neuroprotection. The molecular modes of action underlying these responses are largely unknown. This is in large part due to the limited experimental techniques to study protein-gas interactions. The few techniques that are amenable to such studies are relatively low-throughput and require large amounts of purified proteins. Thus, they do not enable the large-scale analyses that are useful for protein target discovery. Here, we report the application of stability of proteins from rates of oxidation (SPROX) and limited proteolysis (LiP) methodologies to detect protein-xenon interactions on the proteomic scale using protein folding stability measurements. Over 5000 methionine-containing peptides and over 5000 semi-tryptic peptides, mapping to ∼1500 and ∼950 proteins, respectively, in the yeast proteome, were assayed for Xe-interacting activity using the SPROX and LiP techniques. The SPROX and LiP analyses identified 31 and 60 Xe-interacting proteins, respectively, none of which were previously known to bind Xe. A bioinformatics analysis of the proteomic results revealed that these Xe-interacting proteins were enriched in those involved in ATP-driven processes. A fraction of the protein targets that were identified are tied to previously established modes of action related to xenon's anesthetic and organoprotective properties. These results enrich our knowledge and understanding of biologically relevant xenon interactions. The sample preparation protocols and analytical methodologies developed here for xenon are also generally applicable to the discovery of a wide range of other protein-gas interactions in complex biological mixtures, such as cell lysates.

摘要

在生物系统中,稀有气体的分子间相互作用与许多生化反应有关,包括细胞凋亡、炎症、麻醉、镇痛和神经保护。这些反应的分子作用模式在很大程度上是未知的。造成这种情况的主要原因是缺乏研究蛋白质-气体相互作用的实验技术。少数适合此类研究的技术相对通量较低,需要大量的纯化蛋白。因此,它们不能进行大规模的分析,而大规模的分析对于蛋白质靶标发现是很有用的。在这里,我们报告了使用蛋白质氧化稳定性(SPROX)和有限蛋白水解(LiP)方法学来检测蛋白质-氙相互作用的应用,该方法学通过蛋白质折叠稳定性测量在蛋白质组学规模上进行。使用 SPROX 和 LiP 技术,对酵母蛋白质组中约 1500 种和 950 种蛋白质分别含有 5000 多个蛋氨酸肽段和 5000 多个半胰蛋白酶肽段进行了氙相互作用活性测定。SPROX 和 LiP 分析分别鉴定出 31 种和 60 种氙相互作用蛋白,这些蛋白以前都没有被发现与氙结合。对蛋白质组学结果的生物信息学分析表明,这些氙相互作用蛋白富集在那些与 ATP 驱动过程有关的蛋白中。鉴定出的部分蛋白质靶标与氙的麻醉和器官保护特性的先前建立的作用模式有关。这些结果丰富了我们对生物相关氙相互作用的认识和理解。这里为氙开发的样品制备方案和分析方法学也可广泛应用于在复杂的生物混合物(如细胞裂解物)中发现其他广泛的蛋白质-气体相互作用。

相似文献

引用本文的文献

1
Theoretical evaluation of the biological activity of hydrogen.氢生物活性的理论评估
Med Gas Res. 2025 Jun 1;15(2):266-275. doi: 10.4103/mgr.MEDGASRES-D-24-00083. Epub 2025 Jan 18.

本文引用的文献

1
The Gene Ontology resource: enriching a GOld mine.基因本体论资源:丰富一个 GOld 矿。
Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. doi: 10.1093/nar/gkaa1113.
4
Massive in Silico Study of Noble Gas Binding to the Structural Proteome.大规模计算研究稀有气体与结构蛋白质组的结合。
J Chem Inf Model. 2019 Nov 25;59(11):4844-4854. doi: 10.1021/acs.jcim.9b00640. Epub 2019 Nov 5.
6
Evidence for ATP Interaction with Phosphatidylcholine Bilayers.证据表明三磷酸腺苷与磷脂双层相互作用。
Langmuir. 2019 Jul 30;35(30):9944-9953. doi: 10.1021/acs.langmuir.9b01240. Epub 2019 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验