Sáez-Blázquez Rocío, Feist Johannes, Romero Elisabet, Fernández-Domínguez Antonio I, García-Vidal Francisco J
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC) , Universidad Autónoma de Madrid , E-28049 Madrid , Spain.
Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) , E-43007 Tarragona , Spain.
J Phys Chem Lett. 2019 Aug 1;10(15):4252-4258. doi: 10.1021/acs.jpclett.9b01495. Epub 2019 Jul 17.
Recently, exciton-photon strong coupling has been proposed as a means to control and enhance energy transfer in ensembles of organic molecules. Here, we demonstrate that the exciton dynamics in an archetypal purple bacterial photosynthetic unit, composed of six LH2 antennas surrounding a single LH1 complex, is greatly modified by its interaction with an optical cavity. We develop a Bloch-Redfield master equation approach that accounts for the interplay between the B800 and B850 bacteriochlorophyll molecules within each LH2 antenna, as well as their interactions with the central LH1 complex. Using a realistic parametrization of both the photosynthetic unit and optical cavity, we investigate the formation of polaritons in the system, revealing that these can be tuned to accelerate its exciton dynamics by 3 orders of magnitude. This yields a significant occupation of the LH1 complex, the stage immediately prior to the reaction center, with only a few-femtosecond delay after the initial excitation of the LH2 B800 pigments. Our theoretical findings unveil polaritonic phenomena as a promising route for the characterization, tailoring, and optimization of light-harvesting mechanisms in natural and artificial photosynthetic processes.
最近,激子 - 光子强耦合已被提议作为一种控制和增强有机分子集合中能量转移的手段。在这里,我们证明了由围绕单个LH1复合体的六个LH2天线组成的典型紫色细菌光合单位中的激子动力学,通过其与光学腔的相互作用而被极大地改变。我们开发了一种布洛赫 - 雷德菲尔德主方程方法,该方法考虑了每个LH2天线内B800和B850细菌叶绿素分子之间的相互作用,以及它们与中央LH1复合体的相互作用。使用光合单位和光学腔的实际参数化,我们研究了系统中极化激元的形成,发现可以对其进行调节以将激子动力学加速3个数量级。这导致反应中心前一阶段的LH1复合体大量占据,在LH2 B800色素初始激发后仅延迟几飞秒。我们的理论发现揭示了极化激元现象是表征、定制和优化自然和人工光合过程中光捕获机制的一条有前途的途径。