Suppr超能文献

光合作用反应中心和光收集复合物 1 中的激发态动力学。

Excited state dynamics in photosynthetic reaction center and light harvesting complex 1.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

J Chem Phys. 2012 Aug 14;137(6):065101. doi: 10.1063/1.4738953.

Abstract

Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

摘要

光合作用中有效捕获太阳光的关键是第一个能量转换过程,其中电子激发建立跨膜电荷梯度。这种转换是由光合反应中心(RC)完成的,在本文研究的紫色光合细菌球形红杆菌中,RC 被光捕获复合物 1(LH1)包围。RC 使用六个色素分子来启动转换:四个细菌叶绿素和两个细菌叶红素。这些色素的激发态相互作用非常强烈,同时受到周围热蛋白环境的影响。同样,LH1 使用 32 个细菌叶绿素,其激发态动力学受到色素之间的强烈相互作用以及与蛋白质环境的相互作用的影响。在 RC 以及 LH1 中模拟激发态动力学需要理论方法,这些方法既要考虑色素-色素相互作用,也要考虑色素-环境相互作用。在本研究中,我们采用层次运动方程方法描述了 RC 内的激发动力学以及 LH1 和 RC 之间的激发转移。为此,我们提出了一组模型参数,这些参数可再现 RC 以及 LH1 的光谱,并观察到 RC 中振荡激发动力学。我们发现,环境对 LH1-RC 激发转移有显著影响,并且激发在 LH1 和 RC 之间非相干转移。

相似文献

1
Excited state dynamics in photosynthetic reaction center and light harvesting complex 1.
J Chem Phys. 2012 Aug 14;137(6):065101. doi: 10.1063/1.4738953.
2
Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å.
Biochem J. 2021 Oct 29;478(20):3775-3790. doi: 10.1042/BCJ20210631.
5
Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes.
J Phys Chem B. 2023 Aug 24;127(33):7283-7290. doi: 10.1021/acs.jpcb.3c04466. Epub 2023 Aug 9.
6
Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex.
Biochim Biophys Acta. 2012 Feb;1817(2):336-52. doi: 10.1016/j.bbabio.2011.10.009. Epub 2011 Nov 3.
8
Photosynthetic Growth and Energy Conversion in an Engineered Phototroph Containing Light-Harvesting Complex 1 and the Reaction Center Complex.
Biochemistry. 2021 Sep 14;60(36):2685-2690. doi: 10.1021/acs.biochem.1c00462. Epub 2021 Aug 27.
10
Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus.
Structure. 2023 Mar 2;31(3):318-328.e3. doi: 10.1016/j.str.2023.01.006. Epub 2023 Feb 3.

引用本文的文献

1
Exciton transfer between LH1 antenna complex and photosynthetic reaction center dimer.
J Biol Phys. 2021 Sep;47(3):271-286. doi: 10.1007/s10867-021-09576-7. Epub 2021 Jul 2.
2
Excitonic splittings in molecular dimers: why static calculations cannot match them.
Chem Sci. 2015 Nov 1;6(11):6059-6068. doi: 10.1039/c5sc02546j. Epub 2015 Aug 26.
3
Overall energy conversion efficiency of a photosynthetic vesicle.
Elife. 2016 Aug 26;5:e09541. doi: 10.7554/eLife.09541.
4
Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing.
Parallel Comput. 2016 Jul;55:17-27. doi: 10.1016/j.parco.2015.10.015.
5
Optimal Energy Transfer in Light-Harvesting Systems.
Molecules. 2015 Aug 20;20(8):15224-72. doi: 10.3390/molecules200815224.
7
Light harvesting by lamellar chromatophores in Rhodospirillum photometricum.
Biophys J. 2014 Jun 3;106(11):2503-10. doi: 10.1016/j.bpj.2014.04.030.
8
Extreme alien light allows survival of terrestrial bacteria.
Sci Rep. 2013;3:2198. doi: 10.1038/srep02198.

本文引用的文献

1
Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.
J Chem Theory Comput. 2012 Aug 14;8(8):2808-2816. doi: 10.1021/ct3003833. Epub 2012 Jun 15.
2
How Quantum Coherence Assists Photosynthetic Light Harvesting.
J Phys Chem Lett. 2012 Feb 16;3(4):536-542. doi: 10.1021/jz201459c. Epub 2012 Jan 26.
4
Role of protein dynamics in guiding electron-transfer pathways in reaction centers from Rhodobacter sphaeroides.
J Phys Chem B. 2012 Jan 12;116(1):711-7. doi: 10.1021/jp211702b. Epub 2011 Dec 21.
5
Calculation of chromophore excited state energy shifts in response to molecular dynamics of pigment-protein complexes.
Photosynth Res. 2011 Oct;110(1):25-38. doi: 10.1007/s11120-011-9689-2. Epub 2011 Oct 1.
7
Oligomerization state of photosynthetic core complexes is correlated with the dimerization affinity of a transmembrane helix.
J Am Chem Soc. 2011 Sep 7;133(35):14071-81. doi: 10.1021/ja204869h. Epub 2011 Aug 12.
10
Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy.
J Phys Chem B. 2011 May 12;115(18):5678-84. doi: 10.1021/jp2002244. Epub 2011 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验