Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
PLoS Comput Biol. 2019 Jul 10;15(7):e1007081. doi: 10.1371/journal.pcbi.1007081. eCollection 2019 Jul.
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.
对 Bin-Amphiphysin-Rvs(BAR)结构域的研究增进了人们对蛋白质如何使膜变形的基本理解。我们之前的研究表明,串联的 BAR 结构域和 Pleckstrin Homology(PH)结构域是 ACAP1(具有卷曲螺旋、锚蛋白重复和 PH 结构域 I 的 Arfgap)组装成一种不寻常的晶格结构的基础,这也揭示了 BAR 蛋白使膜变形的新范例。在这里,我们最初通过基于计算的方法来完善 ACAP1 晶格结构,以确定其关键的蛋白质接触点。然后,模拟研究揭示了 ACAP1 如何通过动态行为不对称地招募到膜上,尽管它在溶液中以二聚体对称结构存在。我们还进行了电子显微镜(EM)结构研究,进一步深入了解了 ACAP1 晶格组装的动态性质。由于 ACAP1 是一种非传统的 BAR 蛋白,我们的发现拓宽了对蛋白质组装成更高阶结构以实现膜变形的机制范围的理解。