Lacy Michael M, Baddeley David, Berro Julien
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.
Nanobiology Institute, Yale University, West Haven, CT 06516.
Mol Biol Cell. 2017 Aug 15;28(17):2251-2259. doi: 10.1091/mbc.E17-04-0238. Epub 2017 Jun 28.
Molecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. Here we adapt a single-molecule strategy to perform single-molecule recovery after photobleaching (SRAP) within dense macromolecular assemblies to reveal and characterize binding and unbinding dynamics within such assemblies. We applied this method to study the eisosome, a stable assembly of BAR-domain proteins on the cytoplasmic face of the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, the main eisosome BAR-domain protein in fission yeast, we visualized whole eisosomes and, after photobleaching, localized recruitment of new Pil1p molecules with ∼30-nm precision. Comparing our data to computer simulations, we show that Pil1p exchange occurs specifically at eisosome ends and not along their core, supporting a new model of the eisosome as a dynamic filament. This result is the first direct observation of any BAR-domain protein dynamics in vivo under physiological conditions consistent with the oligomeric filaments reported from in vitro experiments.
分子聚集体在细胞内可能具有高度异质性的动力学,但传统荧光显微镜的局限性可能会掩盖纳米级别的特征。在这里,我们采用单分子策略,在密集的大分子聚集体中进行光漂白后的单分子恢复(SRAP),以揭示和表征此类聚集体内的结合和解离动力学。我们应用此方法研究了“eisosome”,它是真菌质膜胞质面上一种由BAR结构域蛋白组成的稳定聚集体。通过仅对裂殖酵母中主要的eisosome BAR结构域蛋白细胞Pil1p的一小部分进行荧光标记,我们可视化了整个eisosome,并在光漂白后,以约30纳米的精度定位新Pil1p分子的募集。将我们的数据与计算机模拟结果进行比较,我们发现Pil1p的交换特异性地发生在eisosome的末端,而不是沿着其核心,这支持了将eisosome作为动态细丝的新模型。这一结果是在生理条件下对体内任何BAR结构域蛋白动力学的首次直接观察,与体外实验报道的寡聚细丝一致。