Allen Jeffrey R, Wilkinson Edward G, Strader Lucia C
Department of Biology, Washington University in St. Louis, MO, USA.
Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA.
FEBS J. 2022 Mar;289(6):1492-1514. doi: 10.1111/febs.15847. Epub 2021 May 1.
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
蛋白质相互作用是细胞生物学的基础。为了实现稳健的信号转导,蛋白质会选择性地相互作用并调节其行为,以引导特定的生物学结果。通常,模块化蛋白质相互作用结构域是这些过程的核心。其中一些结构域结合带有翻译后修饰(如磷酸化)的蛋白质,而其他结构域则识别并结合特定的氨基酸基序。其他模块充当多种蛋白质相互作用支架,或者可以是多功能的,形成头对头同型二聚体并结合特定的肽序列或膜磷脂。此外,所谓的头尾寡聚化结构域(SAM、DIX和PB1)可以形成延伸聚合物,以调节生物学的各个方面。尽管这些结构域的机制和结构各不相同,但它们因其模块化而统一。这些结构域共同具有通用性,并促进了复杂蛋白质相互作用网络的进化。在本综述中,我们将重点介绍特定模块化蛋白质相互作用结构域在植物生物学各个方面的作用。