Whitfield Richard, Parkatzidis Kostas, Rolland Manon, Truong Nghia P, Anastasaki Athina
Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland.
Angew Chem Int Ed Engl. 2019 Sep 16;58(38):13323-13328. doi: 10.1002/anie.201906471. Epub 2019 Aug 7.
Dispersity significantly affects the properties of polymers. However, current methods for controlling the polymer dispersity are limited to bimodal molecular weight distributions, adulterated polymer chains, or low end-group fidelity and rely on feeding reagents, flow-based, or multicomponent systems. To overcome these limitations, we report a simple batch system whereby photoinduced atom transfer radical polymerisation is exploited as a convenient and versatile technique to control dispersity of both homopolymers and block copolymers. By varying the concentration of the copper complex, a wide range of monomodal molecular weight distributions can be obtained (Đ=1.05-1.75). In all cases, high end-group fidelity was confirmed by MALDI-ToF-MS and exemplified by efficient block copolymer formation (monomodal, Đ=1.1-1.5). Importantly, our approach utilises ppm levels of copper (as low as 4 ppm), can be tolerant to oxygen and exhibits perfect temporal control, representing a major step forward in tuning polymer dispersity for various applications.
分散度对聚合物的性能有显著影响。然而,目前控制聚合物分散度的方法仅限于双峰分子量分布、掺杂的聚合物链或低端基保真度,且依赖于进料试剂、基于流动的或多组分体系。为了克服这些限制,我们报道了一种简单的间歇式体系,其中光诱导原子转移自由基聚合被用作一种方便且通用的技术来控制均聚物和嵌段共聚物的分散度。通过改变铜配合物的浓度,可以获得广泛的单峰分子量分布(Đ=1.05-1.75)。在所有情况下,通过基质辅助激光解吸电离飞行时间质谱(MALDI-ToF-MS)证实了高端基保真度,并通过高效的嵌段共聚物形成(单峰,Đ=1.1-1.5)得到了例证。重要的是,我们的方法使用ppm级的铜(低至4 ppm),可以耐受氧气并表现出完美的时间控制,这代表了在为各种应用调整聚合物分散度方面向前迈出的重要一步。