Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain.
Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain; Sequentia Biotech, Carrer Comte D'Urgell 240, Barcelona 08036, Spain.
Cell Rep. 2019 Jul 9;28(2):352-367.e9. doi: 10.1016/j.celrep.2019.06.037.
Mammalian gametogenesis involves dramatic and tightly regulated chromatin remodeling, whose regulatory pathways remain largely unexplored. Here, we generate a comprehensive high-resolution structural and functional atlas of mouse spermatogenesis by combining in situ chromosome conformation capture sequencing (Hi-C), RNA sequencing (RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) of CCCTC-binding factor (CTCF) and meiotic cohesins, coupled with confocal and super-resolution microscopy. Spermatogonia presents well-defined compartment patterns and topological domains. However, chromosome occupancy and compartmentalization are highly re-arranged during prophase I, with cohesins bound to active promoters in DNA loops out of the chromosomal axes. Compartment patterns re-emerge in round spermatids, where cohesin occupancy correlates with transcriptional activity of key developmental genes. The compact sperm genome contains compartments with actively transcribed genes but no fine-scale topological domains, concomitant with the presence of protamines. Overall, we demonstrate how genome-wide cohesin occupancy and transcriptional activity is associated with three-dimensional (3D) remodeling during spermatogenesis, ultimately reprogramming the genome for the next generation.
哺乳动物配子发生涉及剧烈且受到严格调控的染色质重塑,但其调控途径在很大程度上仍未被探索。在这里,我们通过结合原位染色体构象捕获测序(Hi-C)、RNA 测序(RNA-seq)以及 CTCF 和减数分裂黏连蛋白的染色质免疫沉淀测序(ChIP-seq),生成了一张全面的、高分辨率的小鼠精子发生的结构和功能图谱,同时结合共聚焦和超分辨率显微镜。精原细胞呈现出明确的区室模式和拓扑结构域。然而,在前期 I 中,染色体占据和区室化被高度重新排列,黏连蛋白与染色体轴外的 DNA 环中的活性启动子结合。区室模式在圆形精子中重新出现,其中黏连蛋白占据与关键发育基因的转录活性相关。紧凑的精子基因组包含具有活跃转录基因的区室,但没有精细的拓扑结构域,同时存在鱼精蛋白。总的来说,我们展示了基因组范围内黏连蛋白占据和转录活性如何与精子发生过程中的三维(3D)重塑相关联,最终为下一代重新编程基因组。