Suppr超能文献

利用英格兰住院电子健康记录验证算法,以确定肝细胞癌患者中肝硬化的存在和严重程度:一项观察性研究。

Validation of an algorithm using inpatient electronic health records to determine the presence and severity of cirrhosis in patients with hepatocellular carcinoma in England: an observational study.

机构信息

Leeds Institute of Medical Research, University of Leeds, Leeds, UK.

Department of Hepatology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.

出版信息

BMJ Open. 2019 Jul 9;9(7):e028571. doi: 10.1136/bmjopen-2018-028571.

Abstract

OBJECTIVES

Outcomes in hepatocellular carcinoma (HCC) are determined by both cancer characteristics and liver disease severity. This study aims to validate the use of inpatient electronic health records to determine liver disease severity from treatment and procedure codes.

DESIGN

Retrospective observational study.

SETTING

Two National Health Service (NHS) cancer centres in England.

PARTICIPANTS

339 patients with a new diagnosis of HCC between 2007 and 2016.

MAIN OUTCOME

Using inpatient electronic health records, we have developed an optimised algorithm to identify cirrhosis and determine liver disease severity in a population with HCC. The diagnostic accuracy of the algorithm was optimised using clinical records from one NHS Trust and it was externally validated using anonymised data from another centre.

RESULTS

The optimised algorithm has a positive predictive value (PPV) of 99% for identifying cirrhosis in the derivation cohort, with a sensitivity of 86% (95% CI 82% to 90%) and a specificity of 98% (95% CI 96% to 100%). The sensitivity for detecting advanced stage cirrhosis is 80% (95% CI 75% to 87%) and specificity is 98% (95% CI 96% to 100%), with a PPV of 89%.

CONCLUSIONS

Our optimised algorithm, based on inpatient electronic health records, reliably identifies and stages cirrhosis in patients with HCC. This highlights the potential of routine health data in population studies to stratify patients with HCC according to liver disease severity.

摘要

目的

肝细胞癌 (HCC) 的预后取决于肿瘤特征和肝脏疾病严重程度。本研究旨在验证使用住院电子病历从治疗和手术编码中确定肝脏疾病严重程度的方法。

设计

回顾性观察性研究。

地点

英国两个国家卫生服务(NHS)癌症中心。

参与者

2007 年至 2016 年间新诊断为 HCC 的 339 例患者。

主要结局

我们使用住院电子病历开发了一种优化算法,以在 HCC 人群中识别肝硬化并确定肝脏疾病严重程度。该算法的诊断准确性在一个 NHS 信托的临床记录中进行了优化,并在另一个中心的匿名数据中进行了外部验证。

结果

优化算法在推导队列中识别肝硬化的阳性预测值 (PPV) 为 99%,其敏感性为 86%(95%CI 82%至 90%),特异性为 98%(95%CI 96%至 100%)。检测晚期肝硬化的敏感性为 80%(95%CI 75%至 87%),特异性为 98%(95%CI 96%至 100%),PPV 为 89%。

结论

我们基于住院电子病历的优化算法可靠地识别和分期 HCC 患者的肝硬化。这突出了常规健康数据在人群研究中根据肝脏疾病严重程度分层 HCC 患者的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/878d/6624046/5d96f2423e2e/bmjopen-2018-028571f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验