Fogliata Antonella, Stravato Antonella, Pelizzoli Marco, La Fauci Francesco, Gallo Pasqualina, Bresolin Andrea, Cozzi Luca, Reggiori Giacomo
Humanitas Research Hospital IRCCS, Radiotherapy and Radiosurgery Department, Milano-Rozzano, Italy.
A.O. San Giovanni-Addolorata, Medical Physics Department, Roma, Italy.
Med Phys. 2025 Jun;52(6):5032-5038. doi: 10.1002/mp.17806. Epub 2025 Apr 3.
This study evaluates different approaches for estimating the equivalent square field size (ESF) to derive the Output Correction Factors (OCF) according to the IAEA TRS-483 protocol, for small fields, focusing on rectangular fields generated by MLCs. A novel formula is proposed for estimating the ESF to be used alongside the TRS-483 formalism for Field Output Factor (FOF) determination.
FOF for fields from 0.5 to 4 cm side shaped with MLC (jaws fixed to 4.4 × 4.4 cm) were measured using two Varian TrueBeam (with Millennium and HD-MLC), at isocenter, 10 cm depth, with 6 and 10 MV beam energies, both with and without flattening filter, with microDiamond, DiodeE, and PinPoint3D detectors. Measured ratios were corrected using the OCF from the TRS-483 Tables to determine the FOF. The field size for each setting was determined as the FWHM of the scanning profiles acquired with the microDiamond detector. The ESF was determined using three methods: the Equivalent Area method (according to TRS-483), the Sterling Formula, and a new method according to the following formula: , with here empirically set to 1.12.
Corrected FOF for square fields showed good agreement among the detectors with the Equivalent Area as ESF, validating the TRS-483 procedure. For even slightly elongated fields data demonstrated the inadequacy of the equivalent area method. The Sterling formula improved the results but still exhibits substantial differences for the smallest fields. The proposed EqSqFS effectively addresses these shortcomings, showing a description very close to the physical one provided by Ringholtz with the pencil beam method, which utilizes a kernel model to characterize both primary and scatter components of the dose.
A new approach for ESF estimation is introduced, which is valid for elongated small fields, to be used in combination with TRS-483 OCF.
本研究评估了根据国际原子能机构(IAEA)TRS - 483协议估算等效方野尺寸(ESF)以推导输出校正因子(OCF)的不同方法,针对小射野,重点关注多叶准直器(MLC)产生的矩形射野。提出了一个新公式用于估算ESF,以便与TRS - 483形式主义一起用于射野输出因子(FOF)的确定。
使用两台瓦里安TrueBeam(配备Millennium和HD - MLC)在等中心、10 cm深度处,采用6和10 MV束流能量,分别在有和没有均整器的情况下,使用微型金刚石探测器、DiodeE探测器和PinPoint3D探测器,测量由MLC形成的边长为0.5至4 cm的射野(光阑固定为4.4×4.4 cm)的FOF。使用TRS - 483表中的OCF校正测量比值以确定FOF。每种设置下的射野尺寸通过微型金刚石探测器获取的扫描轮廓的半高宽(FWHM)来确定。使用三种方法确定ESF:等效面积法(根据TRS - 483)、斯特林公式以及根据以下公式的新方法: ,此处经验性地将 设置为1.12。
对于以等效面积作为ESF的方形射野,校正后的FOF在探测器之间显示出良好的一致性,验证了TRS - 483程序。对于哪怕是稍微拉长的射野,数据表明等效面积法并不适用。斯特林公式改善了结果,但对于最小的射野仍存在显著差异。所提出的等效方野尺寸公式(EqSqFS)有效地解决了这些缺点,显示出与Ringholtz用铅笔束方法提供的物理描述非常接近,该方法利用核模型来表征剂量的原发射线和散射成分。
引入了一种新的ESF估算方法,该方法对拉长的小射野有效,可与TRS - 483 OCF结合使用。