Suppr超能文献

面外应变和电场对石墨烯/MTe(M = Al,B)异质结构电子结构的影响。

Effects of out-of-plane strains and electric fields on the electronic structures of graphene/MTe (M = Al, B) heterostructures.

作者信息

Zhang Dingbo, Hu Yue, Zhong Hongxia, Yuan Shengjun, Liu Chang

机构信息

School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China.

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

出版信息

Nanoscale. 2019 Aug 7;11(29):13800-13806. doi: 10.1039/c9nr04287c. Epub 2019 Jul 11.

Abstract

Contacts between graphene and two-dimensional (2D) semiconductors have been widely investigated because of their tunable Schottky barrier height (SBH) by means of applied out-of-plane strains, electric fields, etc. Here, based on first-principles calculations, we study the effects of out-of-plane strains (a tensile or compressive strain) and electric fields on the electronic structures of graphene/MTe (M = Al, B) heterostructures. The calculated results indicate that p-type Schottky barriers are formed at the graphene/AlTe and graphene/BTe interfaces with 0.72 and 0.49 eV, respectively. The increase in the interlayer distances (tensile strains) between graphene and MTe can induce a transition from a p-type to n-type Schottky contact. On the other hand, the decrease in the interlayer distances (compressive strains) can transform graphene/MTe into semiconductors, which originates from graphene/MTe with a large compressive strain that makes the two carbon sublattices inequivalent, inducing a band gap. In addition, the applied electric fields can modulate effectively the contact formation (a Schottky or Ohmic contact) and the doping of graphene in graphene/MTe heterostructures. Our study suggests two facile methods to tune the electronic properties of graphene/MTe heterostructures and offer a possibility for graphene/MTe heterostructure-based electronic devices.

摘要

由于通过施加面外应变、电场等可调节肖特基势垒高度(SBH),石墨烯与二维(2D)半导体之间的接触已得到广泛研究。在此,基于第一性原理计算,我们研究了面外应变(拉伸或压缩应变)和电场对石墨烯/MTe(M = Al、B)异质结构电子结构的影响。计算结果表明,在石墨烯/AlTe和石墨烯/BTe界面分别形成了势垒高度为0.72和0.49 eV的p型肖特基势垒。石墨烯与MTe之间层间距的增加(拉伸应变)可导致从p型到n型肖特基接触的转变。另一方面,层间距的减小(压缩应变)可使石墨烯/MTe转变为半导体,这源于具有大压缩应变的石墨烯/MTe使两个碳原子亚晶格不等价,从而诱导出带隙。此外,施加的电场可有效调节石墨烯/MTe异质结构中接触的形成(肖特基或欧姆接触)以及石墨烯的掺杂。我们的研究提出了两种调节石墨烯/MTe异质结构电子性质的简便方法,并为基于石墨烯/MTe异质结构的电子器件提供了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验