Antolinez Felipe V, Winkler Jan M, Rohner Patrik, Kress Stephan J P, Keitel Robert C, Kim David K, Marqués-Gallego Patricia, Cui Jian, Rabouw Freddy T, Poulikakos Dimos, Norris David J
Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland.
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland.
ACS Nano. 2019 Aug 27;13(8):9048-9056. doi: 10.1021/acsnano.9b03201. Epub 2019 Jul 16.
Energy transfer allows energy to be moved from one quantum emitter to another. If this process follows the Förster mechanism, efficient transfer requires the emitters to be extremely close (<10 nm). To increase the transfer range, nanophotonic structures have been explored for photon- or plasmon-mediated energy transfer. Here, we fabricate high-quality silver plasmonic resonators to examine long-distance plasmon-mediated energy transfer. Specifically, we design elliptical resonators that allow energy transfer between the foci, which are separated by up to 10 μm. The geometry of the ellipse guarantees that all plasmons emitted from one focus are collected and channeled through different paths to the other focus. Thus, energy can be transferred even if a micrometer-sized defect obstructs the direct path between the focal points. We characterize the spectral and spatial profiles of the resonator modes and show that these can be used to transfer energy between green- and red-emitting colloidal quantum dots printed with subwavelength accuracy using electrohydrodynamic nanodripping. Rate-equation modeling of the time-resolved fluorescence from the quantum dots further confirms the long-distance energy transfer.
能量转移使能量能够从一个量子发射体转移到另一个量子发射体。如果这个过程遵循福斯特机制,有效的转移要求发射体极其靠近(<10纳米)。为了增加转移距离,人们探索了纳米光子结构用于光子或等离子体介导的能量转移。在此,我们制造高质量的银等离子体谐振器来研究长距离等离子体介导的能量转移。具体而言,我们设计了椭圆形谐振器,使其能在相距最远达10微米的焦点之间实现能量转移。椭圆的几何形状确保了从一个焦点发射的所有等离子体都能被收集,并通过不同路径导向另一个焦点。因此,即使微米级的缺陷阻碍了焦点之间的直接路径,能量仍可转移。我们表征了谐振器模式的光谱和空间分布,并表明这些可用于在使用电流体动力学纳米滴印技术以亚波长精度打印的绿色和红色发射胶体量子点之间转移能量。对量子点时间分辨荧光的速率方程建模进一步证实了长距离能量转移。