Kress Stephan J P, Cui Jian, Rohner Patrik, Kim David K, Antolinez Felipe V, Zaininger Karl-Augustin, Jayanti Sriharsha V, Richner Patrizia, McPeak Kevin M, Poulikakos Dimos, Norris David J
Optical Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland.
Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, 8092 Zurich, Switzerland.
Sci Adv. 2017 Sep 22;3(9):e1700688. doi: 10.1126/sciadv.1700688. eCollection 2017 Sep.
Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser-a laser-like source of high-intensity, narrow-band surface plasmons-was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications.
胶体量子点是坚固、高效且可调谐的发光体,目前用于照明、显示和激光领域。因此,当首次提出受激表面等离子体激元激射器(一种类似激光的高强度、窄带表面等离子体源)时,量子点被指定为克服等离子体显著固有损耗的理想等离子体增益介质。然而,许多后续的受激表面等离子体激元激射器需要单一材料同时提供增益并定义等离子体腔,这种设计无法容纳量子点和其他胶体纳米材料。此外,这些设计以及其他设计都不太适合与更大的等离子体电路中的其他元件集成,限制了它们的应用。我们开发了一种更开放的架构,将增益介质与腔体解耦,从而产生了一类通用的基于量子点的受激表面等离子体激元激射器,可实现对等离子体的可控产生、提取和操纵。我们首先在超光滑的银衬底上所需位置创建具有高品质因数的像差校正等离子体腔。然后通过电液动力打印或滴铸将量子点纳入这些腔体中。在环境条件下进行光激发会产生高于阈值的单色等离子体(630 nm处线宽为0.65 nm,~1000)。该信号被提取出来,通过集成放大器引导,并聚焦在附近的纳米级尖端,产生强电磁场。更一般地说,我们的器件平台可以直接部署在大面积等离子体芯片上的不同波长、尺寸尺度和几何形状上,用于基础研究和应用。