Suppr超能文献

基于知识图谱补全的共病关系预测。

Relation Prediction of Co-Morbid Diseases Using Knowledge Graph Completion.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):708-717. doi: 10.1109/TCBB.2019.2927310. Epub 2021 Apr 6.

Abstract

Co-morbid disease condition refers to the simultaneous presence of one or more diseases along with the primary disease. A patient suffering from co-morbid diseases possess more mortality risk than with a disease alone. So, it is necessary to predict co-morbid disease pairs. In past years, though several methods have been proposed by researchers for predicting the co-morbid diseases, not much work is done in prediction using knowledge graph embedding using tensor factorization. Moreover, the complex-valued vector-based tensor factorization is not being used in any knowledge graph with biological and biomedical entities. We propose a tensor factorization based approach on biological knowledge graphs. Our method introduces the concept of complex-valued embedding in knowledge graphs with biological entities. Here, we build a knowledge graph with disease-gene associations and their corresponding background information. To predict the association between prevalent diseases, we use ComplEx embedding based tensor decomposition method. Besides, we obtain new prevalent disease pairs using the MCL algorithm in a disease-gene-gene network and check their corresponding inter-relations using edge prediction task.

摘要

合并症疾病状况是指一种或多种疾病与主要疾病同时存在。患有合并症疾病的患者比患有单一疾病的患者具有更高的死亡率风险。因此,有必要预测合并症疾病对。尽管过去几年研究人员已经提出了几种预测合并症疾病的方法,但在使用张量分解的知识图嵌入进行预测方面做得并不多。此外,基于复杂向量的张量分解在任何具有生物和生物医学实体的知识图中都没有被使用。我们提出了一种基于张量分解的生物知识图方法。我们的方法在具有生物实体的知识图中引入了复杂值嵌入的概念。在这里,我们构建了一个包含疾病-基因关联及其相应背景信息的知识图。为了预测常见疾病之间的关联,我们使用基于 ComplEx 嵌入的张量分解方法。此外,我们使用疾病-基因-基因网络中的 MCL 算法获得新的常见疾病对,并使用边预测任务检查它们的对应关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验