Suppr超能文献

冷冻铸造组织支架的体内生物相容性和性能的定量评价。

Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America.

出版信息

Biomed Mater. 2020 Jul 23;15(5):055003. doi: 10.1088/1748-605X/ab316a.

Abstract

Quantitative methods are little used for the in vivo assessment of tissue scaffolds to evaluate biocompatibility. To complement current histological techniques, we introduce as a measure of biocompatibility a straightforward, geometric analysis for the quantitative assessment of encapsulation thickness, cross-sectional area, and biomaterial shape. Advantages of this new technique are that it enables, on the one hand, a more complete and objective comparison of scaffolds with differing compositions, architectures, and mechanical properties, and, on the other, a more objective approach to their selection for a given application. In this contribution, we focus on freeze-cast polymeric scaffolds for tissue regeneration and their subcutaneous implantation in mice for biocompatibility testing. Initially, seven different scaffold types are screened. Of these, three are selected for systematic biocompatibility studies based on histopathological criteria: EDC-NHS-crosslinked bovine collagen, EDC-NHS-crosslinked bovine collagen-nanocellulose, and chitin. Geometric models developed to quantify scaffold size, ovalization, and encapsulation thickness are tested, evaluated, and found to be a powerful and objective metric for the in vivo assessment of biocompatibility and performance of tissue scaffolds.

摘要

定量方法在用于评估组织支架的体内生物相容性方面应用较少。为了补充当前的组织学技术,我们提出了一种简单的几何分析方法,用于定量评估封装厚度、横截面积和生物材料形状,以此作为生物相容性的衡量标准。这种新技术的优点在于,一方面可以更完整、更客观地比较具有不同成分、结构和机械性能的支架,另一方面也可以更客观地选择特定应用的支架。在本研究中,我们专注于用于组织再生的冷冻铸造聚合物支架及其在小鼠中的皮下植入以进行生物相容性测试。最初,筛选了七种不同类型的支架。其中,根据组织病理学标准选择三种进行系统的生物相容性研究:EDC-NHS 交联牛胶原蛋白、EDC-NHS 交联牛胶原蛋白-纳米纤维素和壳聚糖。开发了用于量化支架尺寸、椭圆形和封装厚度的几何模型,并对其进行了测试、评估,发现该模型是一种强大而客观的指标,可用于体内评估组织支架的生物相容性和性能。

相似文献

1
Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds.
Biomed Mater. 2020 Jul 23;15(5):055003. doi: 10.1088/1748-605X/ab316a.
2
Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
Int J Biol Macromol. 2020 Mar 15;147:1164-1173. doi: 10.1016/j.ijbiomac.2019.10.085. Epub 2019 Nov 18.
4
Manufacture of a weakly denatured collagen fiber scaffold with excellent biocompatibility and space maintenance ability.
Biomed Mater. 2013 Aug;8(4):045010. doi: 10.1088/1748-6041/8/4/045010. Epub 2013 Jun 27.
5
A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
Biomaterials. 2011 Jul;32(21):4782-92. doi: 10.1016/j.biomaterials.2011.03.023. Epub 2011 Apr 8.
6
Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering.
Biomed Mater. 2018 Jan 24;13(2):025007. doi: 10.1088/1748-605X/aa9089.
8
New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.
Int J Biol Macromol. 2018 Feb;107(Pt A):247-253. doi: 10.1016/j.ijbiomac.2017.08.173. Epub 2017 Sep 1.
9
Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications.
Carbohydr Polym. 2015 Aug 1;126:150-5. doi: 10.1016/j.carbpol.2015.02.050. Epub 2015 Mar 5.

引用本文的文献

1
biocompatibility testing of nanoparticle-functionalized alginate-chitosan scaffolds for tissue engineering applications.
Front Bioeng Biotechnol. 2023 Nov 23;11:1295626. doi: 10.3389/fbioe.2023.1295626. eCollection 2023.
2
3
Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications.
Biomacromolecules. 2019 Oct 14;20(10):3733-3745. doi: 10.1021/acs.biomac.9b00784. Epub 2019 Sep 26.

本文引用的文献

1
Preliminary Assessment of a Hysteroscopic Fallopian Tube Heat and Biomaterial Technology for Permanent Female Sterilization.
Proc SPIE Int Soc Opt Eng. 2017 Jan-Feb;10066. doi: 10.1117/12.2255843. Epub 2017 Feb 22.
2
Values and property charts for anisotropic freeze-cast collagen scaffolds for tissue regeneration.
Data Brief. 2018 Nov 3;22:502-507. doi: 10.1016/j.dib.2018.10.171. eCollection 2019 Feb.
3
Design, Manufacture, and Testing of a Tissue Scaffold for Permanent Female Sterilization by Tubal Occlusion.
MRS Adv. 2018;3(30):1685-1690. doi: 10.1557/adv.2018.57. Epub 2018 Jan 15.
5
Fluorescent Reporter Mice for Nerve Guidance Conduit Assessment: A High-Throughput in vivo Model.
Laryngoscope. 2018 Nov;128(11):E386-E392. doi: 10.1002/lary.27439. Epub 2018 Aug 10.
6
Freeze-cast Porous Chitosan Conduit for Peripheral Nerve Repair.
MRS Adv. 2018;3(30):1677-1683. doi: 10.1557/adv.2018.194. Epub 2018 Feb 20.
7
Collagen: a network for regenerative medicine.
J Mater Chem B. 2016 Oct 28;4(40):6484-6496. doi: 10.1039/c6tb00807k. Epub 2016 Aug 22.
8
Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.
J Mater Sci Mater Med. 2016 Oct;27(10):148. doi: 10.1007/s10856-016-5763-9. Epub 2016 Aug 31.
9
Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.
PLoS One. 2016 Jun 21;11(6):e0157894. doi: 10.1371/journal.pone.0157894. eCollection 2016.
10
Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold.
Biomaterials. 2016 Jan;75:112-122. doi: 10.1016/j.biomaterials.2015.10.009. Epub 2015 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验