Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America.
Biomed Mater. 2020 Jul 23;15(5):055003. doi: 10.1088/1748-605X/ab316a.
Quantitative methods are little used for the in vivo assessment of tissue scaffolds to evaluate biocompatibility. To complement current histological techniques, we introduce as a measure of biocompatibility a straightforward, geometric analysis for the quantitative assessment of encapsulation thickness, cross-sectional area, and biomaterial shape. Advantages of this new technique are that it enables, on the one hand, a more complete and objective comparison of scaffolds with differing compositions, architectures, and mechanical properties, and, on the other, a more objective approach to their selection for a given application. In this contribution, we focus on freeze-cast polymeric scaffolds for tissue regeneration and their subcutaneous implantation in mice for biocompatibility testing. Initially, seven different scaffold types are screened. Of these, three are selected for systematic biocompatibility studies based on histopathological criteria: EDC-NHS-crosslinked bovine collagen, EDC-NHS-crosslinked bovine collagen-nanocellulose, and chitin. Geometric models developed to quantify scaffold size, ovalization, and encapsulation thickness are tested, evaluated, and found to be a powerful and objective metric for the in vivo assessment of biocompatibility and performance of tissue scaffolds.
定量方法在用于评估组织支架的体内生物相容性方面应用较少。为了补充当前的组织学技术,我们提出了一种简单的几何分析方法,用于定量评估封装厚度、横截面积和生物材料形状,以此作为生物相容性的衡量标准。这种新技术的优点在于,一方面可以更完整、更客观地比较具有不同成分、结构和机械性能的支架,另一方面也可以更客观地选择特定应用的支架。在本研究中,我们专注于用于组织再生的冷冻铸造聚合物支架及其在小鼠中的皮下植入以进行生物相容性测试。最初,筛选了七种不同类型的支架。其中,根据组织病理学标准选择三种进行系统的生物相容性研究:EDC-NHS 交联牛胶原蛋白、EDC-NHS 交联牛胶原蛋白-纳米纤维素和壳聚糖。开发了用于量化支架尺寸、椭圆形和封装厚度的几何模型,并对其进行了测试、评估,发现该模型是一种强大而客观的指标,可用于体内评估组织支架的生物相容性和性能。