Ruiz Amalia, Alpízar Adán, Beola Lilianne, Rubio Carmen, Gavilán Helena, Marciello Marzia, Rodríguez-Ramiro Ildefonso, Ciordia Sergio, Morris Christopher J, Morales María Del Puerto
School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
Centro Nacional de Biotecnología (CNB)/CSIC, Darwin, 3, 28049 Madrid, Spain.
Materials (Basel). 2019 Jul 10;12(14):2218. doi: 10.3390/ma12142218.
Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories-cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins-were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles' reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines.
超顺磁性氧化铁纳米颗粒是用于诊疗应用的最突出的试剂之一,主要应用是磁共振成像(MRI)。在生物介质中纳米颗粒表面形成的生物分子界面决定了其在体外和体内的行为。在本研究中,我们比较了在Wistar大鼠血浆存在下,具有两种不同涂层(二巯基琥珀酸(DMSA))的高度单分散氧化铁纳米颗粒以及与双功能聚乙二醇(PEG)衍生分子(2000 Da)缀合后蛋白质冠的形成情况。在一项广泛的蛋白质组学研究中分析了纳米颗粒周围的蛋白质指纹图谱。这项工作中呈现的结果表明,蛋白质冠的组成很难预测。在所有样品中均鉴定出来自不同功能类别的蛋白质——细胞成分、脂蛋白、补体、凝血因子、免疫球蛋白、酶和转运蛋白,且变异性非常小。尽管两种类型的纳米颗粒结合的蛋白量相似,但冠组成上的非常细微差异可能解释了这些纳米颗粒在Caco - 2和RAW 264.7细胞中摄取和生物转化中观察到的变化。还使用标准的3 -(4,5 - 二甲基噻唑 - 2 - 基)- 2,5 - 二苯基溴化四氮唑试验研究了细胞毒性。通过决定纳米颗粒的表面功能化来控制其对生物环境的反应性,可能为控制多功能纳米药物的生物分布、生物降解和清除提示新的途径。