Moon Jaewon, Kum Seungwoo, Lee Sangwon
Information & Media Research Center, Korea Electronics Technology Institute, Seoul 03924, Korea.
Department of Interaction Science, Sungkyunkwan University, Seoul 03063, Korea.
Sensors (Basel). 2019 Jul 10;19(14):3038. doi: 10.3390/s19143038.
The edge platform has evolved to become a part of a distributed computing environment. While typical edges do not have enough processing power to train machine learning models in real time, it is common to generate models in the cloud for use on the edge. The pattern of heterogeneous Internet of Things (IoT) data is dependent on individual circumstances. It is not easy to guarantee prediction performance when a monolithic model is used without considering the spatial characteristics of the space generating those data. In this paper, we propose a collaborative framework using a new method to select the best model for the edge from candidate models of cloud based on sample data correlation. This method lets the edge use the most suitable model without any training tasks on the edge side, and it also minimizes privacy issues. We apply the proposed method to predict future fine particulate matter concentration in an individual space. The results suggest that our method can provide better performance than the previous method.
边缘平台已演变成分布式计算环境的一部分。虽然典型的边缘设备没有足够的处理能力来实时训练机器学习模型,但通常在云端生成模型以供在边缘使用。异构物联网(IoT)数据的模式取决于具体情况。在不考虑生成这些数据的空间的空间特征而使用单一模型时,很难保证预测性能。在本文中,我们提出了一个协作框架,该框架使用一种新方法,根据样本数据相关性从基于云的候选模型中为边缘选择最佳模型。这种方法使边缘能够使用最合适的模型,而无需在边缘端进行任何训练任务,并且还能将隐私问题降至最低。我们将所提出的方法应用于预测单个空间中未来的细颗粒物浓度。结果表明,我们的方法比以前的方法具有更好的性能。