Suppr超能文献

通过途径活性推断,对 RPPA 蛋白质组学数据与多组学数据进行拓扑整合,以进行乳腺癌的生存预测。

Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.

机构信息

Department of Computer Engineering, Ajou University, Suwon, 16499, South Korea.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.

出版信息

BMC Med Genomics. 2019 Jul 11;12(Suppl 5):94. doi: 10.1186/s12920-019-0511-x.

Abstract

BACKGROUND

The analysis of integrated multi-omics data enables the identification of disease-related biomarkers that cannot be identified from a single omics profile. Although protein-level data reflects the cellular status of cancer tissue more directly than gene-level data, past studies have mainly focused on multi-omics integration using gene-level data as opposed to protein-level data. However, the use of protein-level data (such as mass spectrometry) in multi-omics integration has some limitations. For example, the correlation between the characteristics of gene-level data (such as mRNA) and protein-level data is weak, and it is difficult to detect low-abundance signaling proteins that are used to target cancer. The reverse phase protein array (RPPA) is a highly sensitive antibody-based quantification method for signaling proteins. However, the number of protein features in RPPA data is extremely low compared to the number of gene features in gene-level data. In this study, we present a new method for integrating RPPA profiles with RNA-Seq and DNA methylation profiles for survival prediction based on the integrative directed random walk (iDRW) framework proposed in our previous study. In the iDRW framework, each omics profile is merged into a single pathway profile that reflects the topological information of the pathway. In order to address the sparsity of RPPA profiles, we employ the random walk with restart (RWR) approach on the pathway network.

RESULTS

Our model was validated using survival prediction analysis for a breast cancer dataset from The Cancer Genome Atlas. Our proposed model exhibited improved performance compared with other methods that utilize pathway information and also out-performed models that did not include the RPPA data utilized in our study. The risk pathways identified for breast cancer in this study were closely related to well-known breast cancer risk pathways.

CONCLUSIONS

Our results indicated that RPPA data is useful for survival prediction for breast cancer patients under our framework. We also observed that iDRW effectively integrates RNA-Seq, DNA methylation, and RPPA profiles, while variation in the composition of the omics data can affect both prediction performance and risk pathway identification. These results suggest that omics data composition is a critical parameter for iDRW.

摘要

背景

整合多组学数据的分析可以识别单一组学谱无法识别的疾病相关生物标志物。尽管蛋白质水平数据比基因水平数据更直接地反映了癌症组织的细胞状态,但过去的研究主要集中在使用基因水平数据进行多组学整合,而不是使用蛋白质水平数据。然而,在多组学整合中使用蛋白质水平数据(如质谱)存在一些局限性。例如,基因水平数据(如 mRNA)的特征与蛋白质水平数据之间的相关性较弱,并且难以检测用于靶向癌症的低丰度信号蛋白。反转相蛋白阵列(RPPA)是一种高度敏感的基于抗体的信号蛋白定量方法。然而,与基因水平数据中的基因特征数量相比,RPPA 数据中的蛋白质特征数量极低。在这项研究中,我们提出了一种新的方法,用于基于我们之前研究中提出的整合有向随机游走(iDRW)框架,整合 RPPA 谱与 RNA-Seq 和 DNA 甲基化谱进行生存预测。在 iDRW 框架中,每个组学谱都合并到单个反映途径拓扑信息的途径谱中。为了解决 RPPA 谱的稀疏性问题,我们在途径网络上使用带有重新启动的随机游走(RWR)方法。

结果

我们使用来自癌症基因组图谱的乳腺癌数据集进行生存预测分析来验证我们的模型。与利用途径信息的其他方法相比,我们提出的模型表现出了改进的性能,并且也优于不包括我们研究中使用的 RPPA 数据的模型。本研究中确定的乳腺癌风险途径与众所周知的乳腺癌风险途径密切相关。

结论

我们的结果表明,在我们的框架下,RPPA 数据可用于乳腺癌患者的生存预测。我们还观察到 iDRW 有效地整合了 RNA-Seq、DNA 甲基化和 RPPA 谱,而组学数据组成的变化会同时影响预测性能和风险途径识别。这些结果表明,组学数据组成是 iDRW 的一个关键参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc66/6624183/75874538d8a7/12920_2019_511_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验