Suppr超能文献

采用限制替代方案的替代假设进行封闭测试。

Closed testing using surrogate hypotheses with restricted alternatives.

机构信息

The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Rockville, Maryland, United States of America.

St. Michael's College, Colchester, Vermont, United States of America.

出版信息

PLoS One. 2019 Jul 12;14(7):e0219520. doi: 10.1371/journal.pone.0219520. eCollection 2019.

Abstract

INTRODUCTION

The closed testing principle provides strong control of the type I error probabilities of tests of a set of hypotheses that are closed under intersection such that a given hypothesis H can only be tested and rejected at level α if all intersection hypotheses containing that hypothesis are also tested and rejected at level α. For the higher order hypotheses, multivariate tests (> 1df) are generally employed. However, such tests are directed to an omnibus alternative hypothesis of a difference in any direction for any component that may be less meaningful than a test directed against a restricted alternative hypothesis of interest.

METHODS

Herein we describe applications of this principle using an α-level test of a surrogate hypothesis [Formula: see text] such that the type I error probability is preserved if [Formula: see text] such that rejection of [Formula: see text] implies rejection of H. Applications include the analysis of multiple event times in a Wei-Lachin test against a one-directional alternative, a test of the treatment group difference in the means of K repeated measures using a 1 df test of the difference in the longitudinal LSMEANS, and analyses within subgroups when a test of treatment by subgroup interaction is significant. In such cases the successive higher order surrogate tests can be aimed at detecting parameter values that fall within a more desirable restricted subspace of the global alternative hypothesis parameter space.

CONCLUSION

Closed testing using α-level tests of surrogate hypotheses will protect the type I error probability and detect specific alternatives of interest, as opposed to the global alternative hypothesis of any difference in any direction.

摘要

简介

封闭检验原理为一组闭交假设的检验提供了强大的控制,使得给定的假设 H 只能在所有包含该假设的交集中的假设都在水平α下被检验和拒绝时,在水平α下被检验和拒绝。对于高阶假设,通常采用多元检验(>1df)。然而,这样的检验针对的是任何组件的任何方向差异的总替代假设,这可能不如针对受限替代假设的检验有意义。

方法

本文使用替代假设[公式:见文本]的α水平检验来描述这一原理的应用,使得如果[公式:见文本],则保留Ⅰ类错误概率,拒绝[公式:见文本]意味着拒绝 H。应用包括针对单向替代的 Wei-Lachin 检验中多个事件时间的分析、使用纵向 LSMEANS 差异的 1df 检验对 K 个重复测量的处理组均值差异的检验,以及当治疗组间交互作用的检验显著时亚组内的分析。在这种情况下,可以针对检测落入全局替代假设参数空间的更理想受限子空间内的参数值进行连续的高阶替代检验。

结论

使用替代假设的α水平检验进行封闭检验将保护Ⅰ类错误概率并检测到特定的感兴趣替代假设,而不是任何方向差异的全局替代假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/124b/6625735/2f331581efc2/pone.0219520.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验