Lehmacher W, Wassmer G, Reitmeir P
Gesellschaft für Strahlen- und Umweltforschung München, Institut für Medizinische Informatik und Systemforschung, Neuherberg, Germany.
Biometrics. 1991 Jun;47(2):511-21.
Clinical trials are often concerned with the comparison of two treatment groups with multiple endpoints. As alternatives to the commonly used methods, the T2 test and the Bonferroni method, O'Brien (1984, Biometrics 40, 1079-1087) proposes tests based on statistics that are simple or weighted sums of the single endpoints. This approach turns out to be powerful if all treatment differences are in the same direction [compare Pocock, Geller, and Tsiatis (1987, Biometrics 43, 487-498)]. The disadvantage of these multivariate methods is that they are suitable only for demonstrating a global difference, whereas the clinician is further interested in which specific endpoints or sets of endpoints actually caused this difference. It is shown here that all tests are suitable for the construction of a closed multiple test procedure where, after the rejection of the global hypothesis, all lower-dimensional marginal hypotheses and finally the single hypotheses are tested step by step. This procedure controls the experimentwise error rate. It is just as powerful as the multivariate test and, in addition, it is possible to detect significant differences between the endpoints or sets of endpoints.
临床试验通常关注两个具有多个终点的治疗组的比较。作为常用方法(T2检验和邦费罗尼方法)的替代方法,奥布赖恩(1984年,《生物统计学》40卷,第1079 - 1087页)提出了基于统计量的检验方法,这些统计量是单个终点的简单或加权和。如果所有治疗差异都在同一方向,这种方法会很有效[比较波科克、盖勒和齐亚蒂斯(1987年,《生物统计学》43卷,第487 - 498页)]。这些多变量方法的缺点是它们仅适用于证明总体差异,而临床医生还想知道哪些特定终点或终点集实际上导致了这种差异。本文表明,所有检验都适用于构建一个封闭的多重检验程序,即在拒绝总体假设后,逐步检验所有低维边际假设,最后检验单个假设。这个程序控制了实验性错误率。它与多变量检验一样有效,此外,还能够检测终点或终点集之间的显著差异。