Démas Josselin, Bourguignon Mathieu, Périvier Maximilien, De Tiège Xavier, Dinomais Mickael, Van Bogaert Patrick
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France; Institut Régional de Formation aux Métiers de Rééducation et de Réadaptation (IFM3R), Nantes, France.
Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire Cognition Language et Développement, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Department of functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.
Ann Phys Rehabil Med. 2020 Oct;63(5):439-446. doi: 10.1016/j.rehab.2019.06.007. Epub 2019 Jul 9.
Various specific early rehabilitation strategies are proposed to decrease functional disabilities in patients with cerebral palsy (CP). These strategies are thought to favour the mechanisms of brain plasticity that take place after brain injury. However, the level of evidence is low. Markers of brain plasticity would favour validation of these rehabilitation programs. In this paper, we consider the study of mu rhythm for this goal by describing the characteristics of mu rhythm in adults and children with typical development, then review the current literature on mu rhythm in CP. Mu rhythm is composed of brain oscillations recorded by electroencephalography (EEG) or magnetoencephalography (MEG) over the sensorimotor areas. The oscillations are characterized by their frequency, topography and modulation. Frequency ranges within the alpha band (∼10Hz, mu alpha) or beta band (∼20Hz, mu beta). Source location analyses suggest that mu alpha reflects somatosensory functions, whereas mu beta reflects motor functions. Event-related desynchronisation (ERD) followed by event-related (re-)synchronisation (ERS) of mu rhythm occur in association with a movement or somatosensory input. Even if the functional role of the different mu rhythm components remains incompletely understood, their maturational trajectory is well described. Increasing age from infancy to adolescence is associated with increasing ERD as well as increasing ERS. A few studies characterised mu rhythm in adolescents with spastic CP and showed atypical patterns of modulation in most of them. The most frequent findings in patients with unilateral CP are decreased ERD and decreased ERS over the central electrodes, but atypical topography may also be found. The patterns of modulations are more variable in bilateral CP. Data in infants and young children with CP are lacking and studies did not address the questions of intra-individual reliability of mu rhythm modulations in patients with CP nor their modification after motor learning. Better characterization of mu rhythm in CP, especially in infants and young children, is warranted before considering this rhythm as a potential neurophysiological marker of brain plasticity.
人们提出了各种具体的早期康复策略,以减少脑瘫(CP)患者的功能障碍。这些策略被认为有利于脑损伤后发生的脑可塑性机制。然而,证据水平较低。脑可塑性标志物将有助于这些康复计划的验证。在本文中,我们通过描述典型发育的成人和儿童的μ节律特征,考虑为此目的对μ节律进行研究,然后回顾当前关于CP中μ节律的文献。μ节律由脑电图(EEG)或脑磁图(MEG)在感觉运动区域记录的脑振荡组成。这些振荡的特征在于其频率、地形图和调制。频率范围在α波段(约10Hz,μα)或β波段(约20Hz,μβ)内。源定位分析表明,μα反映体感功能,而μβ反映运动功能。μ节律的事件相关去同步化(ERD)随后是事件相关(再)同步化(ERS),与运动或体感输入相关联。即使不同μ节律成分的功能作用仍未完全理解,它们的成熟轨迹也得到了很好的描述。从婴儿期到青春期年龄的增长与ERD增加以及ERS增加相关。一些研究对痉挛性CP青少年的μ节律进行了特征描述,并在大多数研究中显示出非典型的调制模式。单侧CP患者最常见的发现是中央电极上的ERD降低和ERS降低,但也可能发现非典型的地形图。双侧CP中调制模式的变化更大。缺乏CP婴幼儿的数据,研究也未解决CP患者μ节律调制的个体内可靠性问题,也未涉及运动学习后其变化情况。在将这种节律视为脑可塑性的潜在神经生理标志物之前,有必要更好地描述CP中的μ节律,尤其是在婴幼儿中。