Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
Fluids Barriers CNS. 2019 Jul 12;16(1):24. doi: 10.1186/s12987-019-0141-x.
Solutes can enter and leave gray matter in the brain by perivascular routes. The glymphatic hypothesis supposes that these movements are a consequence of inward flow along periarterial spaces and an equal outward flow along perivenous spaces. The flow through the parenchyma between periarterial and perivenous spaces is the same as the inflow and the outflow. Ray et al. (Fluids Barriers CNS 16:6, 2019) have investigated how this flow could interact with diffusion using numerical simulations of real-time iontophoresis experiments that monitor the concentrations of tetramethylammonium ions (TMA) injected into the parenchyma via iontophoresis. For this purpose they have devised a description of the parenchyma incorporating perivascular spaces. Their simulations show that superficial flow velocities of about 50 µm min are needed to produce changes in TMA fluxes comparable to those accounted for by diffusion. In the glymphatic hypothesis the proposed flow through the parenchyma can be estimated from the clearance of solutes that are present in the perivenous outflow at the same concentration as in the interstitial fluid of the parenchyma. Reported clearances are approximately 1 µL min g. This flow can be converted to a superficial flow velocity using the area available for the flow, which can be estimated using Ray et al.'s description of the tissue as 40 cm g. The best available estimate of the flow velocity is thus 0.25 µm min which is 200 times smaller than the flow that produces effects comparable to diffusion for TMA. Thus it follows in Ray et al.'s description of the parenchyma that diffusion rather than flow accounts for TMA movements. Because the diffusion constant depends only weakly on molecular weight the same is expected to apply even for solutes somewhat larger than serum albumin.
溶质可以通过血管周围途径进出大脑灰质。神经胶质淋巴假说假设这些运动是沿动脉周围空间内流和沿静脉周围空间外流的结果。沿动脉周围和静脉周围空间之间的实质内的流动与流入和流出相同。Ray 等人(《中枢神经系统中的液体屏障》16:6, 2019)使用实时离子电渗实验的数值模拟研究了这种流动如何与扩散相互作用,这些实验监测通过离子电渗法注入实质内的四甲基铵离子 (TMA) 的浓度。为此,他们设计了一种包含血管周围空间的实质描述。他们的模拟表明,需要大约 50 µm min 的浅层流速才能产生与扩散解释的 TMA 通量变化相当的变化。在神经胶质淋巴假说中,通过与间质液中相同浓度存在于静脉流出液中的溶质的清除率可以估计出穿过实质的拟议流量。报告的清除率约为 1 µL min g。可以使用组织的 Ray 等人描述中可用的流动面积将这种流动转换为浅层流速,该面积估计为 40 cm g。因此,最佳流速估计值为 0.25 µm min,这比产生与 TMA 扩散相当的效果的流动小 200 倍。因此,在 Ray 等人对实质的描述中,扩散而不是流动解释了 TMA 的运动。由于扩散常数仅对分子量有微弱的依赖性,即使对于比血清白蛋白稍大的溶质,预计也会如此。