Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118.
Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064.
eNeuro. 2019 Jul 31;6(4). doi: 10.1523/ENEURO.0112-19.2019. Print 2019 Jul/Aug.
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus play a critical role in the regulation of fluid and electrolyte homeostasis. They undergo a dramatic structural and functional plasticity under sustained hyperosmotic conditions, including an increase in afferent glutamatergic synaptic innervation. We tested for a postulated increase in glutamate AMPA receptor expression and signaling in magnocellular neurons of the male rat hypothalamic supraoptic nucleus (SON) induced by chronic salt loading. While without effect on GluA1-4 subunit mRNA, salt loading with 2% saline for 5-7 d resulted in a selective increase in AMPA receptor GluA1 protein expression in the SON, with no change in GluA2-4 protein expression, suggesting an increase in the ratio of GluA1 to GluA2 subunits. Salt loading induced a corresponding increase in EPSCs in both oxytocin (OT) and vasopressin (VP) neurons, with properties characteristic of calcium-permeable AMPA receptor-mediated currents. Unexpectedly, the emergent AMPA synaptic currents were silenced by blocking protein synthesis and mammalian target of rapamycin (mTOR) activity in the slices, suggesting that the new glutamate synapses induced by salt loading require continuous dendritic protein synthesis for maintenance. These findings indicate that chronic salt loading leads to the induction of highly labile glutamate synapses in OT and VP neurons that are comprised of calcium-permeable homomeric GluA1 AMPA receptors. The glutamate-induced calcium influx via calcium-permeable AMPA receptors would be expected to play a key role in the induction and/or maintenance of activity-dependent synaptic plasticity that occurs in the magnocellular neurons during chronic osmotic stimulation.
下丘脑大细胞神经内分泌细胞 (MNC) 在调节液体和电解质稳态方面发挥着关键作用。它们在持续高渗条件下经历剧烈的结构和功能可塑性,包括传入谷氨酸能突触传入的增加。我们测试了雄性大鼠下丘脑视上核 (SON) 中的大细胞神经元在慢性盐负荷下假设的谷氨酸 AMPA 受体表达和信号增加。虽然对 GluA1-4 亚基 mRNA 没有影响,但用 2%盐水进行 5-7 天的盐负荷导致 SON 中 AMPA 受体 GluA1 蛋白表达选择性增加,而 GluA2-4 蛋白表达没有变化,表明 GluA1 与 GluA2 亚基的比例增加。盐负荷诱导 OT 和 VP 神经元中的 EPSC 相应增加,具有钙通透性 AMPA 受体介导电流的特性。出乎意料的是,在切片中阻断蛋白质合成和哺乳动物雷帕霉素靶蛋白 (mTOR) 活性会使盐负荷诱导的新兴 AMPA 突触电流失活,这表明盐负荷诱导的新谷氨酸突触需要持续的树突蛋白质合成来维持。这些发现表明,慢性盐负荷导致 OT 和 VP 神经元中诱导高度不稳定的谷氨酸突触,这些突触由钙通透性同型 GluA1 AMPA 受体组成。通过钙通透性 AMPA 受体诱导的谷氨酸钙内流预计在大细胞神经元在慢性渗透刺激期间发生的活动依赖性突触可塑性的诱导和/或维持中发挥关键作用。