Living Systems Institute, University of Exeter, Exeter, United Kingdom.
Biosciences, University of Exeter, Exeter, United Kingdom.
Sci Rep. 2019 Jul 12;9(1):10123. doi: 10.1038/s41598-019-46567-0.
Live-cell imaging in microfluidic devices now allows the investigation of cellular heterogeneity within microbial populations. In particular, the mother machine technology developed by Wang et al. has been widely employed to investigate single-cell physiological parameters including gene expression, growth rate, mutagenesis, and response to antibiotics. One of the advantages of the mother machine technology is the ability to generate vast amounts of images; however, the time consuming analysis of these images constitutes a severe bottleneck. Here we overcome this limitation by introducing MMHelper ( https://doi.org/10.5281/zenodo.3254394 ), a publicly available custom software implemented in Python which allows the automated analysis of brightfield or phase contrast, and any associated fluorescence, images of bacteria confined in the mother machine. We show that cell data extracted via MMHelper from tens of thousands of individual cells imaged in brightfield are consistent with results obtained via semi-automated image analysis based on ImageJ. Furthermore, we benchmark our software capability in processing phase contrast images from other laboratories against other publicly available software. We demonstrate that MMHelper has over 90% detection efficiency for brightfield and phase contrast images and provides a new open-source platform for the extraction of single-bacterium data, including cell length, area, and fluorescence intensity.
在微流控设备中进行活细胞成像现在可以研究微生物群体中的细胞异质性。特别是,Wang 等人开发的母机技术已被广泛用于研究单细胞生理参数,包括基因表达、增长率、突变和对抗生素的反应。母机技术的一个优点是能够生成大量的图像;然而,对这些图像进行耗时的分析构成了一个严重的瓶颈。在这里,我们通过引入 MMHelper(https://doi.org/10.5281/zenodo.3254394)来克服这一限制,这是一个公开的可用的 Python 实现的定制软件,允许自动分析明场或相差以及限制在母机中的细菌的任何相关荧光图像。我们表明,通过 MMHelper 从数万张明场图像中提取的细胞数据与基于 ImageJ 的半自动图像分析获得的结果一致。此外,我们还将我们的软件在处理来自其他实验室的相差图像方面的能力与其他公开可用的软件进行了基准测试。我们证明,MMHelper 对明场和相差图像的检测效率超过 90%,并为提取单细胞数据提供了一个新的开源平台,包括细胞长度、面积和荧光强度。