Bódi Zoltán, Farkas Zoltán, Nevozhay Dmitry, Kalapis Dorottya, Lázár Viktória, Csörgő Bálint, Nyerges Ákos, Szamecz Béla, Fekete Gergely, Papp Balázs, Araújo Hugo, Oliveira José L, Moura Gabriela, Santos Manuel A S, Székely Tamás, Balázsi Gábor, Pál Csaba
Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, Hungary.
Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
PLoS Biol. 2017 May 9;15(5):e2000644. doi: 10.1371/journal.pbio.2000644. eCollection 2017 May.
Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.
基因相同的细胞在基因表达、细胞形态和生理方面常常表现出显著的异质性。有人提出,通过快速产生具有新表型特征的亚群,表型异质性(或可塑性)可加速面临极端环境挑战的种群中适应性进化的速率。这个问题很重要,因为细胞间的表型异质性可能引发微生物耐药性进化和癌症进展的关键步骤。在此,我们研究细胞状态之间的随机转变如何影响酿酒酵母对压力环境的进化适应。我们开发了可诱导的合成基因回路,其能产生不同程度的抗真菌抗性基因表达随机性。我们通过将相应种群暴露于逐渐增加的抗真菌压力下,对携带不同版本基因回路的基因型启动了实验室进化实验。表型异质性通过改变将基因型与适应性联系起来的适应度景观,改变了进化动态。具体而言,它通过细胞间变异性与遗传变异之间的协同作用,增强了有益突变的适应价值。我们的工作表明,当种群面临长期选择压力时,表型异质性是一种不断进化的特征。它在基因组水平上塑造进化轨迹,并促进从不断恶化的环境压力中实现进化拯救。