Department of Physics, University of California, San Diego, La Jolla, United States.
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States.
Elife. 2024 Apr 18;12:RP88463. doi: 10.7554/eLife.88463.
Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, 'what you put is what you get' (WYPIWYG) - that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.
尽管已经取得了很大的进展,但图像处理仍然是高通量分析显微镜数据的一个重大瓶颈。单细胞延时成像的一个流行平台是母机,它能够在精确控制的生长条件下长期跟踪微生物细胞。虽然过去几年已经开发了几种母机图像分析管道,但在非专业观众中采用仍然是一个挑战。为了填补这一空白,我们实现了自己的软件 MM3,作为多维图像查看器 napari 的一个插件。napari-MM3 是一个完整的、模块化的母机数据图像分析管道,它利用了 napari 的高级交互性。在这里,我们概述了 napari-MM3,并将其与几个经过精心设计和广泛使用的图像分析管道进行了测试,包括 BACMMAN 和 DeLTA。研究人员经常使用不同的图像分析方法使用自定义脚本分析母机数据,但不同管道输出的定量比较一直缺乏。为此,我们表明,关键的单细胞生理参数相关性和分布对分析方法的选择具有鲁棒性。然而,我们也发现,阈值参数的微小变化可以系统地改变从单细胞成像实验中提取的参数。此外,我们明确表明,在基于深度学习的分割中,“你放入的就是你得到的”(WYPIWYG),也就是说,细胞分割的训练数据中的像素级变化可以传播到模型输出,并对空间和时间测量产生偏差。最后,虽然这项工作的主要目的是介绍我们在过去十年中在实验室中开发的图像分析软件,但我们也为那些希望在他们的研究中实现基于母机的高通量成像和分析方法的人提供了信息。