Suppr超能文献

基于多层次规则的自然语言处理系统的临床试验队列选择。

Clinical trial cohort selection based on multi-level rule-based natural language processing system.

机构信息

Med Data Quest, Inc, La Jolla, California, USA.

出版信息

J Am Med Inform Assoc. 2019 Nov 1;26(11):1218-1226. doi: 10.1093/jamia/ocz109.

Abstract

OBJECTIVE

Identifying patients who meet selection criteria for clinical trials is typically challenging and time-consuming. In this article, we describe our clinical natural language processing (NLP) system to automatically assess patients' eligibility based on their longitudinal medical records. This work was part of the 2018 National NLP Clinical Challenges (n2c2) Shared-Task and Workshop on Cohort Selection for Clinical Trials.

MATERIALS AND METHODS

The authors developed an integrated rule-based clinical NLP system which employs a generic rule-based framework plugged in with lexical-, syntactic- and meta-level, task-specific knowledge inputs. In addition, the authors also implemented and evaluated a general clinical NLP (cNLP) system which is built with the Unified Medical Language System and Unstructured Information Management Architecture.

RESULTS AND DISCUSSION

The systems were evaluated as part of the 2018 n2c2-1 challenge, and authors' rule-based system obtained an F-measure of 0.9028, ranking fourth at the challenge and had less than 1% difference from the best system. While the general cNLP system didn't achieve performance as good as the rule-based system, it did establish its own advantages and potential in extracting clinical concepts.

CONCLUSION

Our results indicate that a well-designed rule-based clinical NLP system is capable of achieving good performance on cohort selection even with a small training data set. In addition, the investigation of a Unified Medical Language System-based general cNLP system suggests that a hybrid system combining these 2 approaches is promising to surpass the state-of-the-art performance.

摘要

目的

确定符合临床试验选择标准的患者通常具有挑战性且耗时。本文描述了我们的临床自然语言处理(NLP)系统,该系统可根据患者的纵向病历自动评估其资格。这项工作是 2018 年国家 NLP 临床挑战赛(n2c2)和临床试验队列选择专题研讨会的一部分。

材料与方法

作者开发了一个集成的基于规则的临床 NLP 系统,该系统采用基于通用规则的框架,并使用词汇、语法和元级别的、特定于任务的知识输入。此外,作者还实施和评估了一个基于统一医学语言系统和非结构化信息管理架构的通用临床 NLP(cNLP)系统。

结果与讨论

这些系统是作为 2018 年 n2c2-1 挑战赛的一部分进行评估的,作者的基于规则的系统的 F1 得分为 0.9028,在挑战赛中排名第四,与最佳系统的差距不到 1%。虽然通用的 cNLP 系统的性能不如基于规则的系统好,但它确实在提取临床概念方面具有自己的优势和潜力。

结论

我们的结果表明,精心设计的基于规则的临床 NLP 系统即使使用较小的训练数据集也能够在队列选择方面实现良好的性能。此外,对基于统一医学语言系统的通用 cNLP 系统的研究表明,结合这两种方法的混合系统有可能超越现有技术水平。

相似文献

引用本文的文献

3
Named Entity Recognition and Normalization for Alzheimer's Disease Eligibility Criteria.阿尔茨海默病纳入标准的命名实体识别与规范化
Proc (IEEE Int Conf Healthc Inform). 2023 Jun;2023:558-564. doi: 10.1109/ichi57859.2023.00100. Epub 2023 Dec 11.
9
Artificial Intelligence Applied to clinical trials: opportunities and challenges.人工智能应用于临床试验:机遇与挑战。
Health Technol (Berl). 2023;13(2):203-213. doi: 10.1007/s12553-023-00738-2. Epub 2023 Feb 28.

本文引用的文献

2
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验