Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel.
School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester CO4 3SQ, UK.
Acta Biomater. 2019 Sep 15;96:631-645. doi: 10.1016/j.actbio.2019.07.016. Epub 2019 Jul 11.
In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.
在造礁珊瑚中,幼虫的定殖及其快速钙化为研究涉及骨骼形态变化的生物碳酸钙形成机制提供了独特的机会。在这里,我们研究了两种石珊瑚属(Pocillopora)珊瑚:星花石珊瑚(Stylophora pistillata)和尖柱石珊瑚(Pocillopora acuta)在刚定殖后的初生珊瑚虫矿化过程。我们发现初生矿物相是初生 Mg-方解石,具有棒状形态的 P. acuta 和哑铃状形态的 S. pistillata。这些结构构成了基板的第一层,与成年珊瑚骨骼中的快速积累沉积物(钙化中心,CoC)相当。我们还发现,在后续生长步骤中,棒状/哑铃状 Mg-方解石结构将通过文石针的沉积合并成更大的聚集体。我们的结果表明,初始骨骼沉积物的生物控制矿化过程分三个步骤进行:首先,细胞内形成充满二价离子的囊泡。然后这些囊泡被转移到钙化部位,形成初生的 Mg-方解石棒/原始哑铃结构。在第三步中,在这些结构之间形成文石晶体,形成类似球晶的聚集体。
珊瑚定殖和补充期对环境条件高度敏感。在此期间成功矿化对于珊瑚的生存至关重要,并影响其生存机会。因此,了解碳酸盐沉淀的确切机制非常重要。在这里,我们使用体内显微镜、光谱学和分子方法提供了对矿物发育的新见解。我们表明,初生珊瑚虫的矿物库由两种类型的矿物组成:Mg-方解石和文石。此外,我们通过显示二价离子集中在细胞内囊泡中并最终沉积在钙化部位,提供了对离子途径的新见解。