Suppr超能文献

表征405纳米光及康宁®光扩散纤维传输系统的抗菌特性。

Characterizing the Antimicrobial Properties of 405 nm Light and the Corning® Light-Diffusing Fiber Delivery System.

作者信息

Shehatou Cindy, Logunov Stephan L, Dunman Paul M, Haidaris Constantine G, Klubben W Spencer

机构信息

Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642.

Division of Science and Technology, Corning Research & Development Corporation, Corning, New York, 14831.

出版信息

Lasers Surg Med. 2019 Dec;51(10):887-896. doi: 10.1002/lsm.23132. Epub 2019 Jul 14.

Abstract

BACKGROUND AND OBJECTIVES

Hospital-acquired infections (HAIs) and multidrug resistant bacteria pose a significant threat to the U.S. healthcare system. With a dearth of new antibiotic approvals, novel antimicrobial strategies are required to help solve this problem. Violet-blue visible light (400-470 nm) has been shown to elicit strong antimicrobial effects toward many pathogens, including representatives of the ESKAPE bacterial pathogens, which have a high propensity to cause HAIs. However, phototherapeutic solutions to prevention or treating infections are currently limited by efficient and nonobtrusive light-delivery mechanisms.

STUDY DESIGN/MATERIALS AND METHODS: Here, we investigate the in vitro antimicrobial properties of flexible Corning® light-diffusing fiber (LDF) toward members of the ESKAPE pathogens in a variety of growth states and in the context of biological materials. Bacteria were grown on agar surfaces, in liquid culture and on abiotic surfaces. We also explored the effects of 405 nm light within the presence of lung surfactant, human serum, and on eukaryotic cells. Pathogens tested include Enterococcus spp, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Staphylococcus epidermidis, Streptococcus pyogenes, Candida albicans, and Escherichia coli.

RESULTS

Overall, the LDF delivery of 405 nm violet-blue light exerted a significant degree of microbicidal activity against a wide range of pathogens under diverse experimental conditions.

CONCLUSIONS

The results exemplify the fiber's promise as a non-traditional approach for the prevention and/or therapeutic intervention of HAIs. Lasers Surg. Med. © 2019 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

摘要

背景与目的

医院获得性感染(HAIs)和多重耐药菌对美国医疗系统构成重大威胁。由于新抗生素获批数量不足,需要新的抗菌策略来帮助解决这一问题。蓝紫色可见光(400 - 470纳米)已被证明对许多病原体具有强大的抗菌作用,包括有高HAIs致病倾向的ESKAPE细菌病原体的代表菌株。然而,目前预防或治疗感染的光疗解决方案受到高效且不引人注目的光传输机制的限制。

研究设计/材料与方法:在此,我们研究了柔性康宁®光扩散纤维(LDF)在多种生长状态以及生物材料环境下对ESKAPE病原体成员的体外抗菌特性。细菌在琼脂表面、液体培养物以及非生物表面上生长。我们还探讨了在肺表面活性剂、人血清存在的情况下以及对真核细胞的405纳米光的影响。测试的病原体包括肠球菌属、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌、肠杆菌属、表皮葡萄球菌、化脓性链球菌、白色念珠菌和大肠杆菌。

结果

总体而言,在不同实验条件下,405纳米蓝紫色光通过LDF传输对多种病原体发挥了显著程度的杀菌活性。

结论

这些结果例证了该纤维作为预防和/或治疗HAIs的非传统方法的前景。《激光外科与医学》。© 2019作者。《激光外科与医学》由威利期刊公司出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9614/6916415/e30d70e1c5a8/LSM-51-887-g001.jpg

相似文献

1
Characterizing the Antimicrobial Properties of 405 nm Light and the Corning® Light-Diffusing Fiber Delivery System.
Lasers Surg Med. 2019 Dec;51(10):887-896. doi: 10.1002/lsm.23132. Epub 2019 Jul 14.
2
[Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
Zhonghua Shao Shang Za Zhi. 2018 Nov 20;34(11):802-808. doi: 10.3760/cma.j.issn.1009-2587.2018.11.016.
3
Antimicrobial Blue Light Inactivation of Microbial Isolates in Biofilms.
Lasers Surg Med. 2020 Jun;52(5):472-478. doi: 10.1002/lsm.23159. Epub 2019 Sep 19.
4
Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens.
Int J Antimicrob Agents. 2015 Jul;46(1):101-7. doi: 10.1016/j.ijantimicag.2015.02.026. Epub 2015 Apr 20.
5
Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array.
Appl Environ Microbiol. 2009 Apr;75(7):1932-7. doi: 10.1128/AEM.01892-08. Epub 2009 Feb 6.
10
Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens.
J Appl Microbiol. 2010 May;108(5):1494-508. doi: 10.1111/j.1365-2672.2009.04545.x. Epub 2009 Aug 28.

引用本文的文献

3
Novel Semiconductor Cu(CHNS)/ZnTiO/TiO for the Photoinactivation of and under Solar Light.
Nanomaterials (Basel). 2022 Dec 30;13(1):173. doi: 10.3390/nano13010173.
4
Efficacy of violet-blue light to inactive microbial growth.
Sci Rep. 2022 Nov 23;12(1):20179. doi: 10.1038/s41598-022-24563-1.
6
Ultra-high irradiance (UHI) blue light: highlighting the potential of a novel LED-based device for short antifungal treatments of food contact surfaces.
Appl Microbiol Biotechnol. 2022 Jan;106(1):415-424. doi: 10.1007/s00253-021-11718-9. Epub 2021 Dec 10.
7
Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond?
Adv Drug Deliv Rev. 2022 Jan;180:114057. doi: 10.1016/j.addr.2021.114057. Epub 2021 Nov 18.
8
The Effectiveness of Photobiomudulation Therapy (PBMT) in COVID-19 Infection.
J Lasers Med Sci. 2020 Fall;11(Suppl 1):S23-S29. doi: 10.34172/jlms.2020.S4. Epub 2020 Dec 30.
9
Microbial Photoinactivation by Visible Light Results in Limited Loss of Membrane Integrity.
Antibiotics (Basel). 2021 Mar 23;10(3):341. doi: 10.3390/antibiotics10030341.
10
Photoinactivation of Staphylococci with 405 nm Light in a Trachea Model with Saliva Substitute at 37 °C.
Healthcare (Basel). 2021 Mar 11;9(3):310. doi: 10.3390/healthcare9030310.

本文引用的文献

1
Antimicrobial blue light inactivation of pathogenic microbes: State of the art.
Drug Resist Updat. 2017 Nov;33-35:1-22. doi: 10.1016/j.drup.2017.10.002. Epub 2017 Oct 13.
2
Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential.
J Photochem Photobiol B. 2017 May;170:118-124. doi: 10.1016/j.jphotobiol.2017.04.002. Epub 2017 Apr 6.
3
Violet 405-nm light: a novel therapeutic agent against common pathogenic bacteria.
J Surg Res. 2016 Dec;206(2):316-324. doi: 10.1016/j.jss.2016.08.006. Epub 2016 Aug 9.
4
Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms.
Appl Environ Microbiol. 2016 Jun 13;82(13):4006-4016. doi: 10.1128/AEM.00756-16. Print 2016 Jul 1.
6
The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro.
Lasers Med Sci. 2015 Dec;30(9):2265-71. doi: 10.1007/s10103-015-1799-1. Epub 2015 Sep 11.
7
Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.
J Photochem Photobiol B. 2013 Dec 5;129:1-5. doi: 10.1016/j.jphotobiol.2013.09.003. Epub 2013 Oct 4.
8
Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond.
FEMS Microbiol Rev. 2013 Nov;37(6):955-89. doi: 10.1111/1574-6976.12026. Epub 2013 Jul 25.
10
Adenylate kinase release as a high-throughput-screening-compatible reporter of bacterial lysis for identification of antibacterial agents.
Antimicrob Agents Chemother. 2013 Jan;57(1):26-36. doi: 10.1128/AAC.01640-12. Epub 2012 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验